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Some motivating questions

Questions

1 Of philosophy:
What is a quantum permutation? Is there an intuition for quan-
tum permutations?

2 Of random walk theory:
What are (necessary and sufficient) conditions on the support
projection of a state φ on C(G) for:

φ⋆k → h?

3 Of quantum permutation groups:
Is the classical permutation group a maximal quantum sub-
group of the quantum permutation group?
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Preliminaries: quantum permutation groups

The quantum permutation group

Definition (Wang)

C(S+
N ) := C∗(uij : u an N × N magic unitary),

∆(uij) =
∑

uik ⊗ ukj .

If v ∈ MN(C(G)) is a magic fundamental representation:

π : C(S+
N ) → C(G) =⇒ G ⊆ S+

N .

Let 1j→i(σ) = δi,σ(j): the entries of magic representation

v =
(
1j→i

)N
i,j=1

generate C(SN), and so SN ⊆ S+
N .
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Preliminaries: quantum permutation groups

The Gelfand–Birkhoff picture

Three interpretations for quantum permutations:
1 The Gelfand Picture — S+

N is a virtual object, the ‘abstract
spectrum’ of C(S+

N ); quantum permutations don’t exist.

2 The QIT Picture — let X = (V ,E) be a finite graph:

udX = dX u =⇒ “u ∈ G+(X )”.

3 Gelfand–Birkhoff Picture [M2] —
φ ∈ S+

N ⇐⇒ state φ on C(S+
N ) (and therefore S+

N = S(C(S+
N ))),

P[φ(j) = i] := φ(uij), the matrix of which is the Birkhoff slice Φ(φ),
wave-function collapse φ 7→ q̃φ follows measurement:

q̃φ(f ) =
ωφ(qfq)
ωφ(q)

(f ∈ C(S+
N ), q ∈ P(C(S+

N )∗∗)).
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Pal Sets & Quasi-subgroups

Van Daele’s Haar existence proof

Proof. (G = S(C(G))).
1 Let φ ∈ G: as G is a non-empty, convex, weak*-compact, and

closed under convolution the Cesàro averages of {φ,φ⋆2, . . . , φ⋆n}
have a limit point ϕφ such that ϕφ ⋆ φ = ϕφ = φ ⋆ ϕφ.

2 For each positive linear functional ω on C(G) define:

Kω = {φ ∈ G : ω ⋆ φ = ω(1C(G))φ}.

3 Assume the intersection of all the Kω is empty.
4 Then the union of the complements K c

ω := G\Kω is G.
5 Compactness of G gives a finite subcover {K c

ωi
}n

i=1 of G and thus
the intersection of the Kωi is empty.

6 But Van Daele showed Kω1+···+ωn is in this intersection.
7 The intersection of all the Kω is non-empty.
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Pal Sets & Quasi-subgroups Pal sets & quasi-subgroups

Pal sets

Definition

A Pal set is a non-empty convex weak*-closed subset S ⊆ G that is
closed under convolution.

Theorem

A Pal set S ⊆ G contains a unique state ϕS ∈ S such that for all φ ∈ S:

ϕS ⋆ φ = ϕS = φ ⋆ ϕS.

.

Proof.
This is exactly Van Daele’s Haar existence proof, except rather than
defining a Kω for each positive linear functional ω on C(G), they are
defined only for each ω ∈ cone(S).
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Pal Sets & Quasi-subgroups Pal sets & quasi-subgroups

Non-injectivity

Definition
Let G be a compact quantum group. Where:

{uα
ij : i , j = 1, . . . ,dα, α ∈ Irr(G)}

are matrix coefficients of mutually inequivalent irreducible unitary
representations, a central state φ ∈ G is one such that for all α ∈ Irr(G)
there exists φ(α) ∈ C such that:

φ(uα
ij ) = φ(α)δi,j .

Proposition
Let G be a quantum group. The set of central states G0 is a Pal set.
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Pal Sets & Quasi-subgroups Pal sets & quasi-subgroups

Non-injectivity & fix

But the G0-invariant idempotent is the Haar state! That is there are
multiple Pal sets giving the same idempotent; e.g.

{h} ⊂ G0 ⊆ G.

The largest Pal set S ⊆ G containing S-invariant idempotent ϕ is:

Sϕ := {φ ∈ G : φ ⋆ ϕ = ϕ = ϕ ⋆ φ}.

Definition
A quasi-subgroup is a subset of the state space of the form Sϕ for an
idempotent state ϕ on C(G); the quasi-subgroup generated by ϕ.
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Pal Sets & Quasi-subgroups Stabiliser quasi-subgroups

Example: Stabiliser quasi-subgroups

Given a finite group G ⊆ SN and a partition P = B1 ⊔ · · · ⊔ Bk of
{1, . . . ,N}:

GP = {σ ∈ G : σ(Bp) = Bp, 1 ≤ p ≤ k}.

Define, for G ⊆ S+
N :

φ ∈ GP ⇐⇒ Φ(φ) =


ΦB1(φ) 0 · · · 0

0 ΦB2(φ) · · · 0
...

...
. . . · · ·

0 0 · · · ΦBk (φ)

 ,
where ΦBp(φ) = [φ(uij)]i,j∈Bp .

Theorem
For any partition P of {1, . . . ,N}, GP is a quasi-subgroup.
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Pal Sets & Quasi-subgroups Group-like projections in the bidual

The bidual

Let ωφ be extension of φ ∈ S+
N to a state on C(S+

N )∗∗:

Nφ := {f ∈ C(S+
N )∗∗ : ωφ(|f |2) = 0} =⇒ Nφ = C(S+

N )∗∗qφ.

Definition

The support projection of φ ∈ S+
N is pφ := 1S+

N
− qφ.

Where ∆∗∗ : C(G)∗∗ → (C(G)⊗ C(G))∗∗:

Definition
A group-like projection p ∈ C(G)∗∗ is a non-zero projection such that:

∆∗∗(p)(1G ⊗ p) = p ⊗ p.

J.P. McCarthy (MTU) Another look at idempotent states 22 May 2023 10 / 24



Pal Sets & Quasi-subgroups Group-like projections in the bidual

The bidual

Let ωφ be extension of φ ∈ S+
N to a state on C(S+

N )∗∗:

Nφ := {f ∈ C(S+
N )∗∗ : ωφ(|f |2) = 0} =⇒ Nφ = C(S+

N )∗∗qφ.

Definition

The support projection of φ ∈ S+
N is pφ := 1S+

N
− qφ.

Where ∆∗∗ : C(G)∗∗ → (C(G)⊗ C(G))∗∗:

Definition
A group-like projection p ∈ C(G)∗∗ is a non-zero projection such that:

∆∗∗(p)(1G ⊗ p) = p ⊗ p.

J.P. McCarthy (MTU) Another look at idempotent states 22 May 2023 10 / 24



Pal Sets & Quasi-subgroups Group-like projections in the bidual

Group-like projections

Proposition/Theorem/Corollary
1 If φ1, φ2 ∈ G are supported on a group-like projection p ∈ C(G)∗∗,

then so is φ1 ⋆ φ2.
2 Suppose that an idempotent state ϕ ∈ G has group-like support

projection p ∈ C(G)∗∗. Then the quasi-subgroup generated by ϕ:

Sϕ ⊆ {φ ∈ G : ωφ(p) = 1}.

3 Suppose G is non-coamenable. Then the support projection
ph ∈ C(G)∗∗ of the Haar state is not a group-like projection.
Furthermore:

{φ ∈ G : ωφ(ph) = 1} ⊊ Sh.
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Exotic quasi-subgroups

Intermediate quasi-subgroups

Is there an exotic intermediate quasi-subgroup:

SN ⊊ SN ⊊ S+
N ?

Can associate to each ‘genuinely quantum’ permutation φ:

φ |Jcomm
̸= 0 // SN ⊊ S ⊆ S+

N .

Associated idempotent ϕ either:
1 a non-Haar idempotent; or,
2 the Haar idempotent from an exotic quantum subgroup

SN ⊊ GN ⊊ S+
N (N ≥ 6); or

3 the Haar state on C(S+
N ).

If it is always (1) or (3) (or always (3)), then the maximality conjecture
holds.
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Exotic quasi-subgroups

Supports of characters

Recall Φ(φ) = [φ(uij)]
N
i,j=1. In the below, σ, τ ∈ SN :

Proposition
1 φ ∈ hom(C(S+

N ),C) ⇐⇒ Φ(φ) = Pσ ⇐⇒ φ = evσ;
(evσ := δσ ◦ πab, where πab(uij) = 1j→i ),

2 support of evσ, pσ, is central and pσpτ = δσ,τpσ,
3 pσ = uσ(1),1 ∧ uσ(2),2 ∧ · · · ∧ uσ(N),N ,
4 ∆∗∗(pσ)(1S+

N
⊗ pτ ) = pστ−1 ⊗ pτ .

Theorem
Let pSN =

∑
σ∈SN

pσ. Then:

∆∗∗(pSN )(1S+
N
⊗ pSN ) = pSN ⊗ pSN .
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Exotic quasi-subgroups

Exotic quasi-subgroups

Corollary

Suppose hSN is the state on C(S+
N ) defined by hC(SN) ◦ πab. Then

φ ⋆ hSN = hSN = hSN ⋆ φ =⇒ ωφ(pSN ) = 1.

Theorem

Let φ ∈ S+
N be genuinely quantum, ωφ(pSN ) < 1. Form the idempotent

ϕφ from the Cesàro means of φ, and then define:

ϕ := w∗- lim
n→∞

1
n

n∑
k=1

(hSN ⋆ ϕφ)
⋆k .

Then SN ⊊ Sϕ ⊆ S+
N .
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Epilogue

Epilogue

This question brings to the fore something that is fundamen-
tal and pervasive: that what we [mathematicians] are doing is
finding ways for people to understand and think about mathe-
matics.

William Thurston

Theorem

Suppose that ϕ is an idempotent state on C(G).
(i) If ϕ is a (universal) Haar idempotent (i.e. from a quantum

subgroup H ⊆ G), then Sϕ is closed under wave-function collapse.
(ii) If ϕ is a non-Haar idempotent with group-like support projection,

then Sϕ is not closed under wave-function collapse.

Moral: quantum subgroups are the quasi-subgroups that are
closed under wave-function collapse.
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Epilogue

Epilogue: Closed under wave-function collapse

Quantum group fixing bottom card:

u = diag(uS+
N−1 ,1S+

N−1
) =⇒ S+

N−1 ⊂ S+
N ,

with associated idempotent hN→N := hC(S+
N−1)

◦ π.

If φ ⋆ hN→N = hN→N = hN→N ⋆ φ:
1 φ = φ0 ◦ π,
2 φ(uNN) = 1,
3 if q ∈ P(C(S+

N )∗∗) such that ωφ(q) > 0,

q̃φ(uNN) =
ωφ(q uNN q)
ωφ(uNN)

= 1.

4 q̃φ = ψ ◦ π and q̃φ ⋆ hN→N = hN→N = hN→N ⋆ q̃φ.
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Epilogue

Epilogue: Not closed under wave-function collapse

Quasi-subgroup fixing bottom card:

SN→N := {φ ∈ S+
N : φ(uNN) = 1},

with associated idempotent

ϕN→N :=
h(uNN · uNN)

h(uNN)
.

But SN→N is not closed under wave-function collapse:

ũ11ϕN→N(uNN) =
ϕN→N(u11uNNu11)

ϕN→N(u11)
< 1

In fact:
S+

N−1 ⊊ SN→N ⊊ S+
N .
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Appendix: Dynamics

Random, mixed, & truly quantum permutations

Definition

Let pQ := 1S+
N
− pSN . Say that φ ∈ S+

N

1 is a (classically) random permutation if ωφ(pQ) = 0,
2 is a mixed quantum permutation if 0 < ωφ(pQ) < 1,
3 is a truly quantum permutation if ωφ(pQ) = 1.

If φ is mixed:

φ = ωφ(pSN )
ωφ(pSN · pSN )

ωφ(pSN )
+ ωφ(pQ)

ωφ(pQ · pQ)

ωφ(pQ)
.

⋆ r m tq
r r m tq
m m m ¬r
tq tq ¬r -
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Appendix: Dynamics

The Haar state is truly quantum

Theorem
The Haar state is truly quantum.

Proof.
1 Assume ωh(pSN ) > 0. Then ωh(pσ) > 0 for σ ∈ SN . Suppose σ

has λ fixed points.
2 Where fix := Tr u, it follows that

P[h has λ fixed points] := ωh(1{λ}(fix)) ≥ ωh(pσ) > 0.

3 But for any λ ∈ [0,N]:

P[h has λ fixed points] =
∫
{λ}

(2π)−1
√

4t−1 − 1 dt = 0.
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Appendix: Dynamics

Truly quantum permutations are wild

Let G0 be the Kac–Paljutkin quantum group with algebra of functions

C(G0) = Cf1 ⊕ Cf2 ⊕ Cf3 ⊕ Cf4 ⊕ M2(C),

uG0 :=


f1 + f2 f3 + f4 p I2 − p
f3 + f4 f1 + f2 I2 − p p

pT I2 − pT f1 + f3 f2 + f4
I2 − pT pT f2 + f4 f1 + f3

 ,
=⇒ G0 ⊂ S+

N (N ≥ 4).

ωE11◦πG0
(pSN ) = 0 =⇒ E11 ◦ πG0 is truly quantum,

As Birkhoff slice is multiplicative, Φ(φ1 ⋆ φ2) = Φ(φ1)Φ(φ2).

(ωE11◦πG0
)⋆2(pSN ) = 1 =⇒ (E11 ◦ πG0)

⋆2 is random.

Consider for 0 ≤ c ≤ 1:

φ :=
√

1 − c (E11 ◦ πG0) + (1 −
√

1 − c)h =⇒ ωφ⋆2(pQ) = c.
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Appendix: Dynamics

Dynamics

Definition

A quantum permutation φ ∈ S+
N is called α-quantum if ωφ(pQ) = α.

Proposition

If φ ∈ S+
N is α-quantum and ρ ∈ S+

N is β-quantum, then

α+ β − 2αβ ≤ ωφ⋆ρ(pQ) ≤ α+ β − αβ.

This generalises to other quantum subgroups if G ⊆ S+
N is such that:

1 hG := hC(G) ◦ πC(G) has group-like support projection pG,
2 exists quantum permutations φ1, φ2 supported “off” G

(ωφi (pG) = 0) such that:
1 ωφ1⋆φ1(pG) = 0,
2 ωφ2⋆φ2(pG) = 1.
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Appendix: Dynamics

‘Phase’ Diagram

Q3I ⊂ Q2I ⊂ QI ; ∂W ; Q 1
2 W ⊂ QW .
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Appendix: Dynamics

The quantum part of idempotent states

Corollary

If ϕ ∈ S+
N is an idempotent state, ϕ ⋆ ϕ = ϕ, then

ωϕ(pQ) ∈ {0} ∪ [1/2,1].

This suggests the following study: consider

χN := {ωϕ(pQ) : ϕ ∈ S+
N , ϕ ⋆ ϕ = ϕ}.

It is the case that χN = {0} for N ≤ 3, and otherwise not a singleton.

Corollary

A finite quantum permutation group SN ⊊ G ⊊ S+
N satisfies:

dimC(G) ≥ 2N!

In particular, there is no exotic finite quantum group with
dimC(G) < 1440.
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