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Some motivating questions

Questions

@ Of philosophy:

What is a quantum permutation? Is there an intuition for quan-
tum permutations?

@ Of random walk theory:

What are (necessary and sufficient) conditions on the support
projection of a state ¢ on C(G) for:

oK — h?
© Of quantum permutation groups:

Is the classical permutation group a maximal quantum sub-
group of the quantum permutation group?
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Preliminaries: quantum permutation groups

The quantum permutation group
Definition (Wang)

C(Sy) :=C*(uj: uan N x N magic unitary),
A(uij) = Z Uik & Ugj.

If v € Mn(C(G)) is a magic fundamental representation:
m:C(Sy) = C(G) = GC S},
Let 1;,i(0) = d,(j): the entries of magic representation

N
V= (]lf—>/)i,j:1

generate C(Sy), and so Sy C Sy.
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Preliminaries: quantum permutation groups

The Gelfand-Birkhoff picture

Three interpretations for quantum permutations:

@ The Gelfand Picture — Sﬁ is a virtual object, the ‘abstract
spectrum’ of C(Sy;); quantum permutations don’t exist.

@ The QIT Picture — let X = (V, E) be a finite graph:
udy = dxu = “ue GH(X)".

© Gelfand-Birkhoff Picture [M2] —
e p€ S < state p on C(S}) (and therefore S, = S(C(Sy))),
e Plo(j) = i] := ¢(u;), the matrix of which is the Birkhoff slice ®(¢y),
e wave-function collapse ¢ — gy follows measurement:

au() - 248 (1< o(si). a € PO
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Pal Sets & Quasi-subgroups

Van Daele’s Haar existence proof

Proof. (G = S(C(G))).

@ Let p € G: as G is a non-empty, convex, weak*-compact, and
closed under convolution the Cesaro averages of {¢, ¢*2, ..., ¢*"}
have a limit point ¢, such that ¢, x ¢ = ¢, = p * ¢,,.

@ For each positive linear functional w on C(G) define:

Ko ={p € G:wxyp=w(1¢e))e}

© Assume the intersection of all the K, is empty.
© Then the union of the complements K¢ := G\K,, is G.

© Compactness of G gives a finite subcover {KS }_; of G and thus
the intersection of the K., is empty.

© But Van Daele showed K, + ...+, is in this intersection.
@ The intersection of all the K, is non-empty.
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Pal Sets & Quasi-subgroups Pal sets & quasi-subgroups

Pal sets

Definition

A Pal setis a non-empty convex weak*-closed subset S C G that is
closed under convolution.

Theorem

A Pal setS C G contains a unique state ¢s € S such that for all ¢ € S:

Ps* P = Ps = P * Ps.

Proof.

This is exactly Van Daele’s Haar existence proof, except rather than
defining a K, for each positive linear functional w on C(G), they are
defined only for each w € cone(S). O

v
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Pal Sets & Quasi-subgroups Pal sets & quasi-subgroups

Non-injectivity

Definition
Let G be a compact quantum group. Where:

{ug - i, j=1,...,d,, a €lrr(G)}

are matrix coefficients of mutually inequivalent irreducible unitary
representations, a central state ¢ € G is one such that for all « € Irr(G)
there exists ¢(a) € C such that:

p(u) = p(a)dj .
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Pal Sets & Quasi-subgroups Pal sets & quasi-subgroups

Non-injectivity

Definition
Let G be a compact quantum group. Where:

{ug - i, j=1,...,d,, a €lrr(G)}

are matrix coefficients of mutually inequivalent irreducible unitary
representations, a central state ¢ € G is one such that for all « € Irr(G)
there exists ¢(a) € C such that:

p(u) = p(a)dj .

Proposition
Let G be a quantum group. The set of central states Gy is a Pal set.
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Pal Sets & Quasi-subgroups Pal sets & quasi-subgroups

Non-injectivity & fix

But the Gg-invariant idempotent is the Haar state! That is there are
multiple Pal sets giving the same idempotent; e.g.

{h} C Gog CG.
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Pal Sets & Quasi-subgroups Pal sets & quasi-subgroups

Non-injectivity & fix

But the Gg-invariant idempotent is the Haar state! That is there are
multiple Pal sets giving the same idempotent; e.g.

{h} C Gog CG.
The largest Pal set S C G containing S-invariant idempotent ¢ is:
Se ={peG: pxp=0¢=0¢xp}
Definition

A quasi-subgroup is a subset of the state space of the form Sy for an
idempotent state ¢ on C(G); the quasi-subgroup generated by ¢.
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Pal Sets & Quasi-subgroups Stabiliser quasi-subgroups

Example: Stabiliser quasi-subgroups

Given a finite group G C Sy and a partition P = B; Ll - - - Ll By of
{1,...,N}:

Define, for G C Sy

%6(¢) 0 0
petn o= | o XD 0
00 o)

where ®g,(¢) = [2(Uj)]i jes,-
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Pal Sets & Quasi-subgroups Stabiliser quasi-subgroups

Example: Stabiliser quasi-subgroups

Given a finite group G C Sy and a partition P = B; Ll - - - Ll By of
{1,...,N}:

Define, for G C Sy

®g(p) O - 0
peGp = o= | o EW 0
0 0 o)
where ®g,(¢) = [2(Uj)]i jes,-
Theorem
For any partition P of {1, ..., N}, Gp is a quasi-subgroup. J
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Pal Sets & Quasi-subgroups Group-like projections in the bidual

The bidual

Let w,, be extension of € Sy, to a state on C(S};)**:

N, = {f € C(S)™ : wy(|f?) =0} = N, = C(S{)"qp.

Definition
The support projection of ¢ € Sﬁ isp,:=1 s — e J
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Pal Sets & Quasi-subgroups Group-like projections in the bidual

The bidual

Let w,, be extension of € Sy, to a state on C(S};)**:

N, = {f € C(SY)"™ : wy(|f?) =0} = 9N, = C(S})"q,.

Definition
The support projection of ¢ € Sﬁ isp,:=1 s; — e J

Where A** : C(G)** — (C(G) ® C(G))**:

Definition
A group-like projection p € C(G)** is a non-zero projection such that:

A (p)(lg @ p) = p® p.
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Pal Sets & Quasi-subgroups Group-like projections in the bidual

Group-like projections

Proposition/Theorem/Corollary

Q@ Ifp1, 92 € G are supported on a group-like projection p € C(G)**,

then so is p1 x @o.
© Suppose that an idempotent state ¢ € G has group-like support

projection p € C(G)**. Then the quasi-subgroup generated by ¢:

Sg C{peG: wy(p) =1}

© Suppose G is non-coamenable. Then the support projection
pn € C(G)** of the Haar state is not a group-like projection.
Furthermore:

{QOGGZ W@(ph):1}g8h'
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Exotic quasi-subgroups

Intermediate quasi-subgroups
Is there an exotic intermediate quasi-subgroup:

Sn S Sn G Sy?
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Exotic quasi-subgroups

Intermediate quasi-subgroups
Is there an exotic intermediate quasi-subgroup:

+
SNQSNQSN?

Can associate to each ‘genuinely quantum’ permutation ¢:

Pl 70 o SvCSC Sy
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Exotic quasi-subgroups

Intermediate quasi-subgroups
Is there an exotic intermediate quasi-subgroup:

Sn CSn € Sy?

Can associate to each ‘genuinely quantum’ permutation ¢:

Pl 70 o SvCSC Sy

Associated idempotent ¢ either:
@ a non-Haar idempotent; or,
© the Haar idempotent from an exotic quantum subgroup
Sn G Gn S Sy (N > 6);or
@ the Haar state on C(Sj)).

If it is always (1) or (3) (or always (3)), then the maximality conjecture
holds.
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Exotic quasi-subgroups

Supports of characters

Recall () = [p(uj)])_y- In the below, o, 7 € Sy:

Proposition

Q ¢ €hom(C(S}),C) <= &(p) =P, <= p=-ev,;

(evy := 07 o map, Where map(Uy) = 1),
@ support of ev,, p,, is central and pyp; = 8¢+ Ps,
Q Pr = Us(1),1 AUy 2 A+ A Us(n) N5
Q A" (pr)(Ls ® Pr) = Pyr1 @ Pr.

v
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Exotic quasi-subgroups

Supports of characters

Recall () = [p(uj)])_y- In the below, o, 7 € Sy:

Proposition
Q ¢ €hom(C(S}),C) <= &(p) =P, <= p=-ev,;
(evy := 07 o map, Where map(Uy) = 1),
@ support of ev,, p,, is central and pyp; = 8¢+ Ps,
Q Pr = Us(1),1 AUy 2 A+ A Us(n) N5
Q A" (pr)(Ls ® Pr) = Pyr1 @ Pr.

Theorem
Let Psy = ZUESN Po- Then:

A™(psy)(Lst @ ps,) = Psy @ Psy-
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Exotic quasi-subgroups

Exotic quasi-subgroups

Corollary
Suppose hg,, is the state on C(Sy;) defined by hesy) © Tab- Then

(P*hSN = hSN = hsN*ip —— w¢(p3N) =1.
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Exotic quasi-subgroups

Exotic quasi-subgroups

Corollary
Suppose hg,, is the state on C(Sy;) defined by hesy) © Tab- Then

(p*hsN =h3N =h5N*(p - ww(psN)z 1.

Theorem

Let ¢ € Sy, be genuinely quantum, w,(ps,) < 1. Form the idempotent
¢, from the Cesaro means of p, and then define:

n

oo 1 .
1= w' lim % (hs, * b))

k=1

Then Sy € Sy C SI-\iI_

v
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Epilogue

Epilogue

This question brings to the fore something that is fundamen-
tal and pervasive: that what we [mathematicians] are doing is
finding ways for people to understand and think about mathe-

matics.
William Thurston
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Epilogue

Epilogue

This question brings to the fore something that is fundamen-
tal and pervasive: that what we [mathematicians] are doing is
finding ways for people to understand and think about mathe-

matics.
William Thurston

Theorem

Suppose that ¢ is an idempotent state on C(G).

(i) If ¢ is a (universal) Haar idempotent (i.e. from a quantum
subgroup H C G), then S is closed under wave-function collapse.

(i) If ¢ is a non-Haar idempotent with group-like support projection,
then S, is not closed under wave-function collapse.
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Epilogue

Epilogue

This question brings to the fore something that is fundamen-
tal and pervasive: that what we [mathematicians] are doing is
finding ways for people to understand and think about mathe-
matics.

William Thurston

Theorem

Suppose that ¢ is an idempotent state on C(G).
(i) If ¢ is a (universal) Haar idempotent (i.e. from a quantum
subgroup H C G), then S is closed under wave-function collapse.
(i) If ¢ is a non-Haar idempotent with group-like support projection,
then S, is not closed under wave-function collapse.

Moral: quantum subgroups are the quasi-subgroups that are
closed under wave-function collapse.
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Epilogue

Epilogue: Closed under wave-function collapse
Quantum group fixing bottom card:

u=dag(u¥,1s ) = Sy, CSE,

with associated idempotent hy_,n := hC(Sﬁ7 yo.

1
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Epilogue

Epilogue: Closed under wave-function collapse
Quantum group fixing bottom card:
. St
u = diag(u N—1,]lsl4\7_1) = Sy ,CSy,

with associated idempotent hy_,n := hC(Sﬁq) oT.

If ox Aoy = Bnosn = Anon x ¢
Q@ v=poom,
Q o(uww) =1,
@ if g € P(C(Sy)™) such that w,(q) > 0,

wo(quwn ) _ 4

ge(unn) = o (Un)

Q gy =t omand gy *x hy_ony = hnvosn = Anon * Qe
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Epilogue

Epilogue: Not closed under wave-function collapse

Quasi-subgroup fixing bottom card:

Snon = {p € S = p(un) = 13,

with associated idempotent

SN = h(unn - Unn)
o h(unn)
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Epilogue

Epilogue: Not closed under wave-function collapse

Quasi-subgroup fixing bottom card:

Snon = {p € S = p(un) = 13,

with associated idempotent

h(unn - Unn)
h(unn)

But Sy_.n is not closed under wave-function collapse:

ON—N =

dN—N(U11UNNU11)

[E/‘IquHN(UNN) = ¢N—>N(u11)

<1

In fact:
S;lv—_1 C Snon € SI—\IF

=
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Appendix: Dynamics

Random, mixed, & truly quantum permutations

Definition
Let pg := 1t — ps,- Say that ¢ € Sy
@ is a (classically) random permutation if w,(pg) = 0,

@ is a mixed quantum permutation if 0 < w,(pg) < 1,
@ is a truly quantum permutation if w,(pg) = 1.

If » is mixed:

wo(Psy - Psy)
W@(PSN)
x| rfmltg)
rir| mijtq
mi|m| mj|-r
g | tq| —-r| -

) wgou(}pO - PQ)

¥ = wg@(pSN) <,0(pO)

+ W (pO
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Appendix: Dynamics

The Haar state is truly quantum

Theorem
The Haar state is truly quantum.
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Appendix: Dynamics

The Haar state is truly quantum

Theorem
The Haar state is truly quantum.

Proof.

@ Assume wp(ps,) > 0. Then wy(p,) > 0 for o € Sy. Suppose o
has A fixed points.

@ Where fix := Tru, it follows that
P[h has A fixed points] := wx(1 1y (fix)) > wh(ps) > 0.

© Butforany \ € [0, N]:

P[h has A fixed points] = / (2m)'"Wat1 —1dt=0.
{A}

0

o
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Appendix: Dynamics

Truly quantum permutations are wild

Let Gy be the Kac—Paljutkin quantum group with algebra of functions

C(Gy) =CfipCh o Chd Cfy ® Mx(C),

h+th KB+ p  k-p
4G h+fa f+H b-p p
' p’  h-p" fi+f L+ |’
L—p ,OT L+ fH+15

— GoC Sy (N>4)

T

WEtong, (Psy) =0 = E'" o mg, is truly quantum,
As Birkhoff slice is multiplicative, ®(p1 x p2) = ®(p1)P(v2).
(wEﬁMGO)*Z(pSN) =1 = (E" org,)*? is random.

Considerfor0 < c < 1:

p=V1-c(Eong)+(1-vV1-c)h = w2(Pq) = C.
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Appendix: Dynamics

Dynamics

Definition
A quantum permutation ¢ € Sy, is called a-quantum if w,(pg) = .
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Appendix: Dynamics

Dynamics

Definition
A quantum permutation ¢ € Sy, is called a-quantum if w,(pg) = .

Proposition

If o € Sy is a-quantum and p € S}, is B-quantum, then

a4 B =208 < wpsp(Pg) < a+ f —ap.
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Appendix: Dynamics

Dynamics

Definition
A quantum permutation ¢ € Sy, is called a-quantum if w,(pg) = .

Proposition

If o € Sy is a-quantum and p € S}, is B-quantum, then

a4 B =208 < wpsp(Pg) < a+ f —ap.

This generalises to other quantum subgroups if G C S;\? is such that:
Q hg = he(c) © me(c) has group-like support projection pg,

@ exists quantum permutations 4, ¢» supported “off” G
(we,;(pg) = 0) such that:
Q wysp(Ps) =0,
Q w@z*wz(pG) =1
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Appendix: Dynamics

‘Phase’ Diagram

Q3 C Qe C Qs ow; Qi C Qu.
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Appendix: Dynamics

The quantum part of idempotent states

Corollary

If¢ e Sﬁ is an idempotent state, ¢ x ¢ = ¢, then

ws(Pa) € {0} U[1/2,1].
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Appendix: Dynamics

The quantum part of idempotent states

Corollary

If ¢ € Sy, is an idempotent state, ¢ x ¢ = ¢, then

ws(Pa) € {0} U[1/2,1].

This suggests the following study: consider

XN = {wy(Pa) : ¢ € Sy, dx b = o).
It is the case that yn = {0} for N < 3, and otherwise not a singleton.

J.P. McCarthy (MTU) Another look at idempotent states 22 May 2023 23/24



Appendix: Dynamics

The quantum part of idempotent states

Corollary

If ¢ € Sy, is an idempotent state, ¢ x ¢ = ¢, then

ws(Pa) € {0} U[1/2,1].

This suggests the following study: consider
xn = {ws(pa) : ¢ € Sy, o*¢ = ¢}
It is the case that yn = {0} for N < 3, and otherwise not a singleton.
Corollary
A finite quantum permutation group Sy C G C Sy, satisfies:

dim C(G) > 2N!
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Appendix: Dynamics

Some references

[M1] J.P. McCarthy, Analysis for idempotent states on quantum
permutation groups, (2023), available at arxiv:2301.13423.

[M2] J.P. McCarthy, A state-space approach to quantum permutations,
Exp. Math., 40(3), (2022), 628—-664.
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