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Abstract. An exposition of quantum permutation groups where an alternative to the
‘Gelfand picture’ of compact quantum groups is proposed. This point of view is inspired
by algebraic quantum mechanics and posits that states on the algebra of continuous func-
tions on a quantum permutation group can be interpreted as quantum permutations. This
interpretation allows talk of an element of a compact quantum permutation group, and al-
lows a clear understanding of the difference between deterministic, random, and quantum
permutations. The interpretation is illustrated with the Kac-Paljutkin quantum group, the
duals of finite groups, as well as by other finite quantum group phenomena.

Introduction

Of the world of noncommutative mathematics, C∗-algebraic compact quantum groups as
defined by Woronowicz [49] have been around now for about 35 years. No different to other
topics in modern mathematics, it is difficult to have a happy introduction to the world of
these quantum groups without a certain level of mathematical maturity, not only in terms of
technical knowledge, but also the marrying of this technical knowledge with an easiness with
abstraction (a rudimentary acquaintance with quantum physics won’t hinder either). When
the conceptual leap is made, from classical compact groups with commutative algebras of
continuous functions, to compact quantum groups with noncommutative algebras of contin-
uous functions, and it understood for the first time that a genuine1 compact quantum group
is “virtual”, not a set at all (let alone a group), compact quantum groups can be enjoyed as
beautiful, intriguing and mysterious entities.

With for example the quantum Peter-Weyl theorem and the Haar state, compact quan-
tum groups are beautiful in how elegantly their theory generalises that of compact groups.
With the emergence of “infinite” quantum generalisations S+

N of SN for N ≥ 4, and non-Kac
compact quantum groups where the “inverse” appears non-involutive, intriguing in how the
theory differs. The theory has matured greatly; today a lot of new results for compact quan-
tum groups are written in the more technically demanding language of the locally compact
quantum groups of Kustermans and Vaes [26], and the theory is in the foothills of having
applications to quantum information by way of the theory of quantum automorphism groups
of graphs (see for example [30]).

Through all of this progress, the mystery of the virtual nature of quantum groups remains.
The first strike against this conceptual barrier is to deploy a formal notation, the Gelfand
picture, that makes sense whenever the object in question is classical. Rather than talking
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about a quantum group A, or, slightly better, an algebra of continuous functions on a compact
quantum group A, talk instead about an algebra of continuous functions, C(G), on a compact
quantum group G. Or the algebra of regular functions O(G), or the algebra of (essentially)
bounded measurable functions L∞(G).

Is it possible to interpret compact quantum groups as being like compact groups beyond
the correct but staid: “they are generalisations of compact groups in the sense that com-
pact quantum groups with commutative algebras of functions can be identified with compact
groups”? Do quantum group theorists hide behind their beautiful and intriguing results about
quantum groups an even deeper intuition for what these objects are? If these deeper intu-
itions and interpretations exist, the author has not seen them written down anywhere in any
great detail.

It could be argued that, like the notation emanating from the Gelfand picture, good intu-
ition (certainly) helps the beginner, and (possibly) helps the expert. The aim of this work
is to present a good intuition/interpretation for the class of compact quantum groups known
as quantum permutation groups. Unconventionally, it identifies a set, the set of states on the
algebra of functions, as the set of quantum permutations/elements of a quantum group.

This Gelfand–Birkhoff picture requires a leap to be made before ever ‘going quantum’.
Pick up a fresh deck of N cards in some known order and “randomly” shuffle the deck.
The shuffle is distributed according to some probability ν in the set of probabilities on SN ,
Mp(SN ). Without turning over the cards, i.e. making some measurements, it can not be
said exactly what permutation it was. The leap here is to not just consider as permutations
the deterministic permutations in SN , but also the random permutations in Mp(SN ) (which
includes via the Dirac measures the deterministic permutations). Bilinearly extending the
group law to Mp(SN ), gives the random group law, the convolution

(ν2 ? ν1)({σ}) =
∑
%∈SN

ν2({σ%−1})ν1({%}),

for which the Dirac measure eve is an identity. Furthermore the inverse can be extended to
a map inv : Mp(SN ) → Mp(SN ), which gives the inverse of a Dirac measure for the random
group law. Precisely because the map inv is not an inverse on the whole of Mp(SN ), the
set of random permutations Mp(SN ) does not form a group, but it is nonetheless a monoid
whose elements can be well-interpreted, understood, and studied in their own right. Note
that where F (SN ) is the algebra of complex-valued functions on SN , Mp(SN ) is the subset of
positive functionals of norm one on F (SN ): the set of states of F (SN ).

Once this leap is made, that the elements of Mp(SN ) rather than of SN can be studied as
“permutations”, it isn’t so difficult to leap to quantum permutation groups, where a state on
an algebra defining the quantum permutation group can be interpreted as a permutation, a
quantum permutation. What makes the interpretation cogent is the choice to interpret the
generators uij ∈ C(S+

N ) of the quantum permutation groups S+
N as relating with the states

on C(S+
N ) precisely as the generators 1j→i(σ) = δi,σ(j) of the complex-valued functions on SN

relate to states on F (SN ). That is, as Bernoulli random variables with distribution

P[1j→i = 1 | ν] = ν(1j→i) (ν ∈Mp(SN )).
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Furthermore, given a random permutation ν ∈Mp(SN ), this is precisely the probability that
it maps j → i. Use the notation thus:

P[ν(j) = i] := ν(1j→i); (0.1)

with some probability, the random permutation ν maps j → i.

A big question here: does an exposition of an interpretation comprise mathematics? It can
be claimed that it is at least of mathematics; quoting William Thurston [43]:

This question brings to the fore something that is fundamental and pervasive:
that what we [mathematicians] are doing is finding ways for people to under-
stand and think about mathematics.

Please note that no claim of originality is made: the work is exposition of well-established
theory from a certain point of view. Neither does the work comprise a survey (comprehensive
or otherwise). Those interested in learning more about compact quantum groups in general
can consult the original papers of Woronowicz [48, 49], with exposition/survey well served
by the lecture notes (see the web) of Banica, Franz–Skalski–So ltan, Freslon, Skalski, Weber,
and Vergnioux. Overarching references are Timmermann [44] and Neshveyev–Tuset [38]. For
those interested in quantum permutations specifically, see the original paper of Wang [46],
the survey of Banica–Bichon–Collins [6], and the tome of Banica [4]. It would be remiss not
to give a few references that experts have said came to mind when it was communicated that
an expository piece on intuition/interpretation for quantum permutation groups was being
worked on: [14, 16, 17, 30, 37, 41, 42].

The paper is organised as follows. In Section 1 the conventional Gelfand picture of C∗-
algebras is outlined together with a very brief overview of the theory of Woronowicz compact
quantum groups. Section 2 introduces the state-space-as-quantum-space Gelfand–Birkhoff
picture, and motivates this by introducing the rudiments of quantum probability and mea-
surement, including the Born rule, sequential measurement, and wave function collapse. In
Section 3, following a layperson’s motivation of what a quantum permutation should be, the
quantum permutation groups of Wang and their subgroups are introduced, along with some
basic properties. Section 4 starts with more focussed discussion of the Gelfand–Birkhoff pic-
ture, and makes this cogent by introducing the Birkhoff slice (essentially the extension of
(0.1) to quantum permutations). This gives enough intuition to inspire the “simplest yet”
proof of no quantum permutations on three symbols, as well as a lucid understanding of how
deterministic and random permutations sit in a quantum permutation group. In Section 5
the convolution of states is defined as the quantum group law, and the counit and antipode
understood on this level. The duals of discrete groups that are finitely-generated by elements
of finite order, understood as abelian with respect to the quantum group law, are studied in
more depth as quantum permutation groups. Finally in Section 6 some intrigue: an explo-
ration of some of the phenomena that occur once the commutative world of classical groups
is left.

1. Compact quantum groups

In 1995, Alain Connes posed the question: What is the quantum automorphism group of
a space? For the case of finite spaces, this question was answered in 1998 by Shuzou Wang
[46]. There are two main ways of defining this quantum automorphism group but first some
noncommutative terminology/philosophy is required.
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1.1. The Gelfand picture. The prevailing point of view in the study of compact quantum
groups is to employ what could be called the Gelfand picture. This starts with a categorical
equivalence given by Gelfand’s Theorem:

compact Hausdorff spaces ' (unital commutative C∗-algebras)op.

Starting with a compact Hausdorff space X, the algebra of continuous functions on X, C(X),
is a unital commutative C∗-algebra; and starting with a unital commutative C∗-algebra A,
the spectrum, Ω(A), the set of characters, non-zero homomorphisms A → C, is a compact
Hausdorff space such that A ∼= C(Ω(A)). Therefore a general unital commutative C∗-algebra
can be denoted A = C(X). Inspired by this, one can define the category of ‘compact quantum
spaces’ as

compact quantum spaces :' (unital C∗-algebras)op.

In analogy with the commutative case, a general not-necessarily commutative unital C∗-
algebra can be denoted A = C(X), the unit IA =: 1X, C(X) be called an algebra of continuous
functions on the quantum space X, and X referred to as the spectrum of A. However, in the
Gelfand picture, X is not a set any more but a so-called virtual object, only spoken about via
its algebra of continuous functions.

Some basic knowledge of C∗-algebras is required here. See [36] for further details on the
below. The set of states S(C(X)), is the set of positive linear functionals C(X)→ C of norm
one. A state ϕ ∈ S(C(X)) is pure if it has the property that whenever ρ is a positive linear
functional such that ρ ≤ ϕ, necessarily there exists t ∈ [0, 1] such that ρ = tϕ. Otherwise
ϕ is mixed. Elements of the form g∗g ∈ C(X) are positive, and for positive f ∈ C(X) there
exists a (pure) state ϕ such ϕ(f) = ‖f‖. Let π(C(X)) ⊂ B(H) be a unital representation. For

non-zero ξ ∈ H and ξ̂ = ξ/‖ξ‖,
ϕξ(f) = 〈ξ̂, π(f)ξ̂〉,

defines a state on C(X) called a vector state. The GNS construction πϕ(C(X)) ⊂ B(Hϕ) gives
norm one ξϕ ∈ Hϕ such that

ϕ(f) = 〈ξϕ, πϕ(f)ξϕ〉. (1.1)

Therefore all states are vector states for some representation.

An element p ∈ C(X) is a projection if p = p∗ = p2. For f ∈ C(X) define |f |2 = f∗f . If
p1, p2, . . . , pn ∈ C(X) are projections,

|pnpn−1 · · · p2p1|2 = p1p2 · · · pn−1pnpn−1 · · · p2p1. (1.2)

This work will consider (finite) partitions of unity, (finite) sets of projections {pi}ni=1 ⊂ C(X)
such that

n∑
i=1

pi = 1X.

Necessarily elements of partitions of unity are pairwise orthogonal, pipj = δi,jpi. If C(X) is
finite dimensional it will be denoted by F (X), the algebra of functions on a finite quantum
space X, in this case isomorphic to a multi-matrix algebra:

F (X) =
m⊕
i=1

MNi(C).
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If F (X) is commutative, then X := X := {x1, x2, . . . , xN} is a finite set, F (X) is the algebra
of all complex valued functions on it, isomorphic to the diagonal subalgebra of MN (C).

1.2. Compact Quantum Groups. In the well-established setting of C∗-algebraic compact
quantum groups as defined by Woronowicz [49], it is through the Gelfand picture that one
speaks of a quantum group G, through a unital noncommutative C∗-algebra A that is consid-
ered an algebra of continuous functions on it, A = C(G). If X and Y are compact topological
spaces, then, where ⊗ is the minimal tensor product:

C(X × Y ) ∼= C(X)⊗ C(Y ).

Let S be a compact semigroup. The transpose of the continuous multiplication m : S×S → S
is a ∗-homomorphism, the compultiplication:

∆ : C(S)→ C(S × S) ∼= C(S)⊗ C(S).

The associativity of the multiplication gives coassociativity to the comultiplication:

(∆⊗ IC(S)) ◦∆ = (IC(S) ⊗∆) ◦∆. (1.3)

If C(S) satisfies Woronowicz cancellation

∆(C(S))(1S ⊗ C(S)) = ∆(C(S))(C(S)⊗ 1S) = C(S)⊗ C(S);

then it has cancellation, and a compact semigroup with cancellation is a group. In this sense
Woronowicz cancellation is a C(G)-analogue of cancellation. This inspires:

Definition 1.1. An (Woronowicz C∗-) algebra of continuous functions on a compact quantum
group G is a unital C∗-algebra C(G) together with a unital ∗-morphism ∆ : C(G)→ C(G)⊗
C(G) that satisfies coassociativity and Woronowicz cancellation:

∆(C(G))(1G ⊗ C(G)) = ∆(C(G))(C(G)⊗ 1G) = C(G)⊗ C(G).

If C(G) is finite dimensional, G is said to be a finite quantum group, and F (G) written for
C(G).

Algebras of continuous functions on compact quantum groups come with a dense Hopf
∗-algebra O(G) of regular functions on a/the algebraic compact quantum group G. Hopf
∗-algebras are ∗-algebras which satisfy axioms which are precisely F (G)-analogues of the
(finite) group axioms. The F (G)-analogue of the group law, is comultiplication ∆ : F (G)→
F (G)⊗alg.F (G); an F (G)-analogue of the (inclusion of the) identity is the counit ε : F (G)→
C, ε(f) := eve(f) = f(e); and an F (G)-analogue of the inverse is an antihomomorphism called
the antipode, S : F (G)→ F (G), Sf(σ) = f(σ−1). A most leisurely introduction to how these
maps, and the F (G)-analogues of associativity (coassociativity, (1.3)), of the identity axiom
(the counital property), and of the inverse axiom (the antipodal property), are F (G)-analogues
of the (finite) group axioms is given in Section 1.1, [33].

Note the stress on an: the algebra of regular functions can have more than one completion.
There is a maximal, universal completion Cu(G), and a minimal, reduced completion Cr(G).
However all of these completions give the same dense Hopf ∗-algebra of regular functions in
the following sense: given any algebra of continuous functions on a compact quantum group,
surject onto the dense subalgebra O(G), complete to Cα(G), and then surject onto the dense
subalgebra Oα(G) associated to Cα(G):

C(G) � O(G) ↪→ Cα(G) � Oα(G),
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it turns out that O(G) ∼= Oα(G) as algebras of regular functions on algebraic compact quantum
groups [44]. In this sense, a compact quantum group can be identified with non-isomorphic
algebras of continuous functions Cα(G) and Cβ(G) if their dense algebras of regular functions
are isomorphic. Non-isomorphic algebras of continuous functions can arise for the dual of

discrete group Γ. The dual Γ̂ is a compact quantum group, with algebra of regular functions

given by the group ring, O(Γ̂) := CΓ. All the completions of O(Γ̂) are canonically isomorphic
exactly when Γ is amenable: when all the completions of the algebra of regular functions on
a compact quantum group O(G) are canonically isomorphic, in particular Cu(G) ∼= Cr(G),
the compact quantum group is said to be coamenable.

What makes a compact quantum group a generalisation of a compact group? Consider a
commutative Woronowicz C∗-algebra A. Gelfand’s Theorem states A ∼= C(Ω(A)), the unital
∗-homomorphism ∆ : C(Ω(A)) → C(Ω(A) × Ω(A)) gives a continuous map m : Ω(A) ×
Ω(A) → Ω(A), the coassociativity of ∆ gives associativity to m, and so (Ω(A),m) is a
compact semigroup with Woronowicz cancellation, and so a group. That compact quantum
groups with commutative algebras of continuous functions are in fact (classical) compact
groups is Gelfand duality: that the virtual quantum objects are still studied through their
algebra of functions is the essence of the Gelfand picture.

A particular class of compact quantum group, earlier defined by Woronowicz [48], is a
compact matrix quantum group.

Definition 1.2. If a compact quantum group G is such that

• C(G) generated (as a C∗-algebra) by the entries of a unitary matrix u = (uij)
N
i,j=1 ∈

MN (C(G)), and
• u and ut are invertible, and
• ∆ : C(G)→ C(G)⊗ C(G), uij 7→

∑N
k=1 uik ⊗ ukj is a ∗-homomorphism,

then G is a compact matrix quantum group with fundamental representation u ∈MN (C(G)).

Theorem 1.3. (Woronowicz) If a compact matrix quantum group G has commutative algebra
of functions C(G), then G is homeomorphic to a closed compact subgroup of the unitary group,
UN (C) •

The quantum groups studied in this work are all compact matrix quantum groups such
that u ∈ MN (C(G)), the fundamental representation, is a magic unitary. That is the rows
and columns of u are partitions of unity:

N∑
k=1

uik = 1G =
N∑
k=1

ukj .

Such compact quantum groups are called quantum permutation groups. There are finite
quantum groups which are not quantum permutation groups [7].

2. Quantum Mathematics

The preceding section outlines the conventional view of compact quantum groups. The
Gelfand picture allows nominal talk about a compact quantum group as an object, but in
general does not permit the consideration of an element of a compact quantum group. Aspects
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of quantum mechanics can be used to inspire a way of doing this for quantum permutation
groups.

In his book Weaver [47] states and argues the point that:

The fundamental idea of mathematical quantisation is that sets are replaced
by Hilbert spaces... [and] the quantum version of a [real]-valued function on a
set is a [self-adjoint] operator on a Hilbert space.

Weaver attributes the Hilbert-space-as-set point of view to Birkhoff and von Neumann [12],
and the operator-as-function point of view to Mackey [32]. In this picture, the elements of
the projective version of a Hilbert space P (H) form a quantum space, and the self-adjoint
operators are random variables P (H) → R, with the Born rule providing probability, and
spectral projections providing wave function collapse. Call this the Birkhoff picture.

Inspired by algebraic quantum mechanics [27], and its descendent quantum probability [31],
this work will push on slightly, and instead define the compact quantum space associated to a
C∗-algebra to be the set of states on the algebra. Call this the Gelfand–Birkhoff picture. This
is a well worn path outside the field of compact quantum groups, see [21, 28] for discussion
and further references.

To illustrate, consider a state ϕ on a unital C∗-algebra C(X), the self-adjoint elements
of which are called observables. Consider a projection, a Bernoulli observable, p ∈ C(X).
Associated to p are two events: p = 1 given by p1 := p, and p = 0 given by p0 := 1X− p. The
distribution of p given the state ϕ is given by (essentially the Born rule by (1.1):

P[p = θ |ϕ] := ϕ(pθ).

If the event p = θ is non-null, P[p = θ |ϕ] = ϕ(pθ) > 0, and the measurement of ϕ with p

gives p = θ, the state transitions ϕ 7→ p̃θϕ where for f ∈ C(X):

p̃θϕ(f) :=
ϕ(pθfpθ)

ϕ(pθ)
.

This is wave function collapse/state conditioning. If ϕξ is a vector state given by a represen-

tation π(C(X)) ⊂ B(H), and ϕξ(p
θ) > 0 (so that moreover π(pθ) 6= 0) then p̃θϕξ is also a

vector state, given by ϕπ(pθ)ξ. To see this use the fact that π(pθ) is a projection:

p̃θϕξ(f) =
ϕξ(p

θfpθ)

ϕξ(pθ)
=
〈ξ, π(pθfpθ)ξ〉
〈ξ, π(pθ)ξ〉

=
〈π(pθ)ξ, π(f)π(pθ)ξ〉
〈π(pθ)ξ, π(pθ)ξ〉

=
〈π(pθ)ξ, π(f)π(pθ)ξ〉

‖π(pθ)ξ‖2
=

〈
π(pθ)ξ

‖π(pθ)ξ‖
, π(f)

π(pθ)ξ

‖π(pθ)ξ‖

〉
= ϕπ(pθ)ξ(f).

Take another projection q ∈ C(X). Suppose that the event p = θ1 has been observed so

that the state is now p̃θ1ϕ. The probability that measurement now produces q = θ2, and

p̃θ1ϕ 7→ q̃θ2 p̃θ1ϕ, is:

P[q = θ2 | p̃θ1ϕ] := p̃θ1ϕ(qθ2) =
ϕ(pθ

1
qθ2pθ1)

ϕ(pθ1)
.
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Define now the event ((q = θ2) � (p = θ1) |ϕ), said ‘given the state ϕ, q is measured to be θ2

after p is measured to be θ1’. Using the expression above a probability can be ascribed to
this event:

P [(q = θ2) � (p = θ1) |ϕ] := P[q = θ2 | p̃θ1(ϕ)] · P[p = θ1 |ϕ]

=
ϕ(pθ1qθ2pθ1)

ϕ(pθ1)
· ϕ(pθ1)· = ϕ(pθ1qθ2pθ1) = ϕ(|qθ2pθ1 |2).

Inductively, for a finite sequence of projections (pi)
n
i=1, and θi ∈ {0, 1}:

P [(pn = θn) � · · · � (p1 = θ1) |ϕ] = ϕ(|pθnn · · · p
θ1
1 |

2).

It is worth noting that

P[(p2 = θ2) � (p1 = θ1)|ϕ] ≤ P[p1 = θ1|ϕ], (2.1)

so that in particular if P[(p2 = θ2) � (p1 = θ1)|ϕ] > 0 then P[p1 = θ1|ϕ] > 0.

In general, pq 6= qp and so

P [(q = θ2) � (p = θ1) |ϕ] 6= P [(p = θ1) � (q = θ1) |ϕ] ,

and this is to be interpreted that q and p are not simultaneously observable. However the
sequential projection measurement q � p is an ‘observable’ in the sense that it is a random
variable with values in {0, 1}2. Inductively the sequential projection measurement pn � · · · �
p1 is an {0, 1}n-valued random variable.

If p and q do commute, then the distributions of q � p and p � q are equal in the sense
that

P [(q = θ2) � (p = θ1) |ϕ] = ϕ(|qθ2pθ1 |2) = P [(p = θ1) � (q = θ2) |ϕ] ,

it doesn’t matter what order they are measured in, the outputs of the measurements can be
multiplied together, and this observable can be called pq = qp.

Measurement with a projection includes an a priori distribution, and wave function col-
lapse: but these are not purely quantum mechanical phenomenon, and occur also with mea-
surements from a commutative subalgebra C(X) ⊂ C(X). To illustrate, let X = {x1, . . . , xN}
and consider the diagonal subalgebra F (X) of F (X) := MN (C). Subsets Y ⊂ X yield sub-
spaces F (Y ) ⊂ F (X) together with projections pY ∈ F (X). The a priori distribution of pY
is:

P[pY = θ |ϕ] = ϕ(pθY ),

and, conditional on pY = θ, there is wave function collapse to p̃θY ϕ ∈ S(F (X)).

A defining difference between classical and quantum measurement is the quantum phe-
nomenon of projection observables that cannot be simultaneously measured in the sense that
(p � q) 6= (q � p). In classical measurement, all projection observables can be simultaneously
measured, and this implies that while classical measurement can disturb a mixed state, the
effects are purely probabilistic, capturing a decrease in uncertainty about the state. In the fi-
nite, classical case of F (X), measurement with an appropriate sequence of classical projection
measurements results in collapse to a pure state evxi ∈ S(F (X)). Pure states are invariant
for the diagonal subalgebra: further measurement does not disturb the state. In contrast, for
any state ϕ ∈ S(F (X) there is a projection p ∈ F (X) that can disturb it, and so collapse to
complete certainty is impossible.
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Sequential measurement of finite spectrum observables f ∈ C(X) can also be considered.
Through the inverse of the isometric Gelfand–Naimark *-isomorphism C(X) → π(C(X)) ⊂
B(H), a finite spectrum observable f ∈ C(G) has a spectral decomposition f =

∑|σ(f)|
k=1 fi p

fi ,

that defines a partition of unity {pfi}i=1,...,|σ(f)| ⊂ C(X), and

P[f = fi |ϕ] = ϕ(pfi). (2.2)

Furthermore this gives expectations

E[f |ϕ] := ϕ(f).

For continuous spectrum observables, by passing to the enveloping von Neumann algebra
C(X)∗∗ ∼= πU (C(X))′′, which will be denoted `∞(X), and taking the normal extension of ϕ to
a state ωϕ on `∞(X), Borel functional calculus can be used to measure, for example, if f is
in some Borel subset of its spectrum, via the projection 1S(f) ∈ `∞(X), so that

P[f ∈ S |ϕ] := P[1S(f) = 1 |ϕ] := ωϕ(1S(f)).

If f ∈ S is non-null, for wave function collapse, embed functions f ∈ C(X) via ı : C(X) ↪→
`∞(X), and the state transitions to ϕ 7→ 1̃S(f)ϕ ∈ S(C(X)) defined by:

1̃S(f)ϕ(g) =
ωϕ(1S(f)ı(g)1S(f))

ωϕ(1S(f))
.

Although not considered in this work, for not-necessarily finite spectrum observables (fi)
n
i=1,

the distribution of the sequential measurement fn � · · · � f1 could be defined for Borel sets
Si ⊂ σ(fi):

P[(fn � · · · � f1) ∈ (Sn, · · · , Si)|ϕ] = ωϕ(|1Sn(fn) · · ·1S1(f1)|2).

3. Quantum permutations

Fresh decks of playing cards produced by e.g. the US Playing Card Company always come
in the same original order:

A♠, . . . ,K♠, A♣, . . . ,K♣, A♦, . . . ,K♦, A♥, . . . ,K♥,

Respectively enumerate using c : {1, 2, . . . , 52} → {A♠, . . . ,K♥}. The original order can be
associated with the pure state eve ∈Mp(S52). After a suitably randomised shuffle, an active
permutation, the deck will be in some unknown order given by a mixed state, a random
permutation ς ∈ Mp(S52), with the card in position j moved to position ς(j). Turn over the
card in position i to reveal card c(j). This observable, denoted x−1(i) ∈ F (S52), reveals that
the random permutation sent j to i. This observable has spectrum σ(x−1(i)) = {1, 2, . . . , 52},
and thus spectral decomposition

x−1(i) =

52∑
k=1

k uS52
ik ,

with {uS52
ik }k=1,...,52 a partition of unity. The distribution of x−1(i) given the state ς ∈Mp(S52)

can be denoted

P[ς−1(i) = j] := P[x−1(i) = j | ς] = ς(uS52
ij ). (3.1)
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Each card c(j) must be mapped somewhere and so, for all ς ∈Mp(S52)

52∑
k=1

P[ς−1(k) = j] = ς

(
52∑
k=1

uS52
kj

)
= 1,

this implies that {uS52
kj }k=1,...,52 is also a partition of unity, giving another observable

x(j) :=

52∑
k=1

k uS52
kj ,

and note that

P[ς(j) = i] := P[x(j) = i | ς] = ς(uS52
ij ) = P[ς−1(i) = j].

The observable x−1(i) is measured by turning over the card in position i. How is x(j)
measured? Go back to the deck in the original order, turn card c(j) face up, shuffle with ς.
The position of card c(j) is x(j).

Following the sequential measurement

x−1(51) � · · · � x−1(2) � x−1(1),

the random permutation will collapse to a (deterministic) permutation evσ ∈Mp(S52). If the
sequential measurement is paused, say at ` < 51 with

(x−1(`) � · · · � x−1(2) � x−1(1)) = (j`, . . . , j2, j1),

the state has collapsed to

ς` := ũS52
ij`
· · · ũS52

ij2
ũS52
ij1
ς,

then

P[ς`(k) = j] := P[x−1(k) = jk | ς`] = δj,jk ,

that is once a card c(k) is observed in the position jk once, that is determined once and for
all.

Note that (uS52
ij )52

i,j=1 ∈M52(F (S52)) is a magic unitary.

There is no issue whatsoever talking about the set of random permutations, Mp(SN )),
nor an element of this set ς ∈ Mp(SN ). Inspired by the Gelfand–Birkhoff picture, imagine
for a moment that the same can be done for quantum permutations: imagine that there is
a C∗-algebra C(S+

N ) such that the set of quantum permutations on N symbols is given by

S(C(S+
N )), and a quantum permutation is simply an element ς ∈ S(C(S+

N )).

What would make a permutation quantum? In light of previous discussions perhaps what
might make a permutation quantum is that quantum versions of observables x−1(i) and x(j)
be not simultaneously observable. This implies that, with a deck of cards shuffled with a
quantum permutation, once the first card has been revealed, the observation of the second
card might disturb the state in a such a way that non-classical events can occur. What would
be a non-classical event? Turning over the first card to reveal the ace of hearts, then turning
over the second card to reveal an ace of spaces, then turning over the first card again to find
it is not longer the ace of hearts but the ace of diamonds:

(ς−1(1) = c−1(A♦)) � (ς−1(2) = c−1(A♠)) � (ς−1(1) = c−1(A♥)).
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With the deck in the original order, x(j) would be measured by turning card c−1(j) face
up, shuffling with ς, and noting the position of c−1(j) after the shuffle. Similarly x−1(i) would
be observable by revealing the card in position i. What would not be permitted would be
shuffling with more than one card face up, or revealing more than one card at once.

Given a quantum permutation ς ∈ S(C(S+
N )), similarly to before, the spectral decompo-

sitions of the observables x−1(i) and x(j) should give a magic unitary (uij)
52
i,j=1. Denote as

before

P[ς(j) = i] := P[x(j) = i | ς] = ς(uij).

The projective nature of wave function collapse, that conditional on ς(j) = i, ς 7→ ũijς, implies
that

P[(ς(j) = i) � (ς(j) = i)] = P[ς(j) = i];

the probability of observing ς(j) = i after (just) observing ς(j) = i is one.

In the sequel this will all be made mathematically precise.

3.1. Wang’s Quantum Permutation Groups. In a survey article, Banica, Bichon &
Collins [6] attribute to Brown [15] the idea of taking a matrix group G ⊂ UN , realising
C(G) as a universal commutative C∗-algebra generated by the matrix coordinates uij ∈ C(G)
subject to some relations R, and then studying (if it exists), the noncommutative universal
C∗-algebra generated by abstract variables uij subject to the same relations R. This proce-
dure, later called liberation in the context of compact quantum groups by Banica & Speicher
[11], was carried out by Wang to create quantum versions of the orthogonal and unitary
groups, and later quantum permutation groups.

Let F (SN ) be the algebra of complex functions on SN with basis {δσ}σ∈SN . Define 1j→i ∈
F (SN ) by:

1j→i(σ) :=

{
1, if σ(j) = i,

0, otherwise.

Where ∆ is the transpose of the group law m : SN × SN → SN , so that ∆(f) = f ◦m, and
employing F (SN × SN ) ∼= F (SN )⊗alg. F (SN ), note that

∆(1j→i) =

N∑
k=1

1k→i ⊗alg. 1j→k.

Furthermore

δσ =
N∏
j=1

1j→σ(j), (3.2)

and so the matrix uSN = (1j→i)
N
i,j=1 is a unitary with inverse the transpose of uSN , whose

entries generate F (SN ). Therefore F (SN ) is a commutative algebra of functions on a compact
matrix quantum group. Furthermore the 1j→i are projections, and

N∑
k=1

1k→i = 1SN =

N∑
k=1

1j→k.
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Therefore the matrix uSN = (1j→i)
N
i,j=1 is a magic unitary. Indeed F (SN ) has a presentation

as a universal commutative C∗-algebra:

F (SN ) ∼= C∗comm(ucij |uc an N ×N magic unitary).

Following Wang [46], liberate by considering the universal C∗-algebra:

C(S+
N ) := C∗(uij |u an N ×N magic unitary).

The universal property says that if (vij)
N
i,j=1 is another N ×N magic unitary, then uij 7→ vij

is a ∗-homomorphism. It can be shown that[
N∑
k=1

uik ⊗ ukj

]N
i,j=1

∈MN (C(S+
N )⊗ C(S+

N ))

is a magic unitary, and thus ∆(uij) =
∑N

k=1 uik⊗ukj is a ∗-homomorphism. It is straightfor-

ward to show that ∆ is unital and coassociative, and so C(S+
N ) is an algebra of continuous

functions on a compact matrix quantum group, the quantum permutation group on N sym-
bols.

3.2. Quantum Permutation Groups. If G is a compact matrix quantum group whose
fundamental representation is an N ×N magic unitary uG, then the universal property gives
π : C(S+

N )→ C(G) a surjective ∗-homomorphism that intertwines the comultiplication:

∆C(G) ◦ π = (π ⊗ π) ◦∆C(S+
N ), (3.3)

which is to say that G < S+
N , G is a quantum subgroup of S+

N . Furthermore, if G < S+
N

by a comultiplication-intertwining surjective ∗-homomorphism π1 : C(S+
N ) → C(G), then

[π1(uij)]
N
i,j=1 is a magic unitary that is a fundamental representation for G.

Definition 3.1. A quantum permutation group G is a compact matrix quantum group whose
fundamental representation is a magic unitary.

On the algebra of regular functions O(G), also generated (as a ∗-algebra) by uGij ∈ O(G),
the comultiplication, counit, and antipodal maps are given by:

∆(uGij) =

N∑
k=1

uGik ⊗alg. u
G
kj ,

ε(uGij) = δi,j , (3.4)

S(uGij) = uGji.

In general the counit does not extend to a character on a completion Cα(G) of O(G). The
antipode satisfies S2 = IO(G) so that G is a Kac algebra.

The justification for calling S+
N the quantum permutation group on N symbols goes beyond

the liberation of F (SN ). Wang originally defines the (universal) quantum automorphism
group of Cn (that leaves the counting measure invariant). This leads to the definition of S+

N

given above. This work should further cement that S+
N is a quantum generalisation of SN .

Theorem 3.2. For N ≤ 3, C(S+
N ) ∼= F (SN ) •

See Section 4.1 for a new proof for N = 3.
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Theorem 3.3. For N ≥ 4, C(S+
N ) is noncommutative and infinite dimensional.

Proof. The standard argument for N = 4 uses the universal C∗-algebra generated by two
projections (see [6]). To be slightly more concrete, consider the discrete infinite dihedral
group

D∞ := 〈a, b | a2 = b2 = e〉 ∼= Z2 ∗ Z2.

The infinite dihedral group is amenable, which implies that the reduced and universal group

C∗-algebras coincide. Denote the (noncommutative) group ring by CD∞ and C(D̂∞) the
C∗-completion, which is in fact *-isomorphic to the universal C∗-algebra generated by two

projections [40]. Together with ∆(g) = g ⊗ g, the dual D̂∞ is a compact matrix quantum
group, with unit 1

D̂∞
:= e, and fundamental representation

ũD̂∞ :=

(
a 0
0 b

)
.

In fact D̂∞ is quantum permutation group. Where p := (e + a)/2 and q := (e + b)/2, via

a = uD̂∞11 − u
D̂∞
21 (and similarly for b) the following is a fundamental representation for D̂∞

that is a magic unitary:

uD̂∞ :=


p e− p 0 0

e− p p 0 0
0 0 q e− q
0 0 e− q q

 (3.5)

Therefore D̂∞ is an infinite quantum subgroup of S+
4 , and it follows that C(S+

4 ) is infinite
dimensional and noncommutative.

To extend to N ≥ 4 use uD̂∞<S4+` := diag(uD̂∞ ,1
D̂∞

, · · · ,1
D̂∞

) •

Note also that replacing a and b with order two generators of DN shows that D̂N < S+
4

(exhibiting Th. 1.1 (9), [5]). Showing that D̂3 = Ŝ3 < S+
4 is the easiest way of showing that

C(S+
4 ) is noncommutative.

Theorem 3.4. For N ≥ 5, S+
N is not coamenable.

Proof. The standard argument that S+
N is not coamenable for N ≥ 5 uses fusion rules [1].

However, in similar spirit to the (standard) proof of Theorem 3.3, using the fact that a compact
subgroup of a coamenable compact quantum group is coamenable [45], the exhibition of a
non-coamenable subgroup of S+

5 proves Theorem 3.4 for N = 5 (the extension to N > 5
follows in the same way as the extension of Theorem 3.3 to N > 4). Let a and b be the

respective generators of Z3 ∗ Z2. Let C(Ẑ3 ∗ Z2) be a completion of C(Z3 ∗ Z2) to a compact

quantum group. Where ω = e2πi/3, consider the following magic unitary:

uẐ3 :=
1

3

 e+ a+ a2 e+ ω2a+ ωa2 e+ ωa+ ω2a2

e+ ωa+ ω2a2 e+ a+ a2 e+ ω2a+ ωa2

e+ ω2a+ ωa2 e+ ωa+ ω2a2 e+ a+ a2
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Note that a = uẐ3
11 +ω2uẐ3

21 +ωuẐ3
31 . With the same notation q = (e+ b)/2 as with the infinite

dihedral group, except obviously with e ∈ Z3 ∗ Z2, let

uẐ2 :=

[
q e− q

e− q q

]
.

Consider the block magic unitary uẐ3∗Z2 ∈M5(C(Z3 ∗ Z2)):

uẐ3∗Z2 :=

[
uẐ3 0

0 uẐ2

]
.

This shows that Ẑ3 ∗ Z2 < S+
5 . The dual of a discrete group is coamenable if and only if the

group is amenable; Z3 ∗ Z2 is not amenable [40], therefore its dual is not coamenable, and
thus neither is S+

5 •

Banica [4] calls Ẑ2 ∗ Z3 by Bichon’s group dual subgroup of S+
5 . More on duals in Section

5.2.

It is the case that SN ≤ S+
N is a quantum permutation group, known to be maximal for

N ≤ 5 [2], but conjectured to be maximal for all N ∈ N. One motivation for the current work
is to perhaps provide some intuition to attack such a problem. See Section 6 for more.

4. The Gelfand-Birkhoff picture for quantum permutations

Definition 4.1. Where C(G) is an algebra of continuous functions on a quantum permutation
group, a quantum permutation is an element of S(C(G))

With the use of the Birkhoff slice (Section 4.1) this statement will be made cogent, and
as will be seen in Section 5, there is a natural candidate for what should be considered a
quantum group law S(C(G))× S(C(G))→ S(C(G)).

Returning to Gelfand’s Theorem: as soon as an algebra of functions C(G) is noncommu-
tative, it is often remarked that it obviously cannot be the algebra of functions on a compact
Hausdorff space (with the commutative pointwise multiplication). However the elements of
C(G) viewed through the lens of Kadison’s function representation are affine functions on a
compact Hausdorff space.

Note firstly that S(C(G)) is a weak-* compact Hausdorff space [36], and recall the embed-
ding ı : C(G) ↪→ `∞(G), f 7→ ı(f):

ı(f)(ρ) := ρ(f) (ρ ∈ C(G)∗).

Finally weak*-convergence of a net of states ϕλ → ϕ, that for f ∈ C(G)

ϕλ(f)→ ϕ(f),

gives continuity to ı(f):

ı(f)(ϕλ)→ ı(f)(ϕ).

The multiplication ı(C(G)) × ı(C(G)) → ı(C(G)) is not the pointwise multiplication, but
inherited from C(G):

ı(f)ı(g) = ı(fg) 6= ı(gf) = ı(g)ı(f).
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Through this lens the elements of C(G) are affine functions S(C(G)) → C, that is for
ρ1, ρ2 ∈ S(C(G)), and λ ∈ [0, 1]:

ı(f)(λ ρ1 + (1− λ) ρ2) = λ ı(f)(ρ1) + (1− λ) ı(f)(ρ2).

An element of ı(C(G)) ( C(S(C(G))) is therefore completely determined by its values on the

weak-∗ closure of the set of pure states, the pure state space P(C(G)) := PS(C(G))
w∗

. This
is precisely how a function on a finite group f0 : G → C extends to a function on the set of
random permutations on G, f1 : Mp(G)→ C:

f1(λ evg1 +(1− λ) evg2) = λ f0(g1) + (1− λ) f0(g2).

While Gelfand’s Theorem says, through the fact that the character space and pure state
space coincide for unital commutative C∗-algebras, that for a finite group G, the embedded
ı(F (G)) is the full algebra of continuous functions F (P(F (G))), in the noncommutative case,
restricting even to P(C(G)), ı(C(G)) is a proper subset of C(S(C(G))), so, while tempting,
it is abuse of notation to define G := P(C(G)) as the compact Hausdorff space, and continue
to use the C(G) notation. If in the classical case the algebra of functions, F (G) is understood
as the algebra of affine functions on the random permutations Mp(G)→ C, and an algebra of
continuous functions on a quantum permutation group C(G) is understood as an algebra of
affine functions S(C(G))→ C, then the relationship between P(C(G)) and S(C(G)) reflects
in the quantum case the relationship between G and Mp(G) in the classical case.

These analogies are well captured by the following schematic:

Deterministic Random

Pure Quantum Quantum

The objects on the left are pure states on C∗-algebras; while the objects on the right are
mixed states. The objects on top are states on commutative algebras; while the objects on
the bottom are states on noncommutative algebras. The focus of this work is on the mixed
states. This pair of dichotomies is discussed in [13].

Therefore with the focus on mixed rather than pure states, the set of quantum permutations
will be denoted by G := S(C(G)), a quantum permutation written an element ς ∈ G, but the
C(G) notation will be kept, but with the implicit understanding that it is a proper subset
of C(S(C(G))) (not to mention the fact that for non-coamenable G there are different C∗-
completions of O(G), and thus different state spaces). Particularly if ς ∈ G is deterministic
(see Section 4.2), the notation ς = evσ will be used. In this sense, if C(G) has a counit, its
Birkoff slice (see Section 4.1, below) is (e) by (3.4), and so can be denoted ε := eve.

4.1. The Birkhoff Slice. Given a quantum permutation group G ≤ S+
N generated by a

magic unitary (uGij)
N
i,j=1 ∈MN (C(G)), via the Gelfand–Birkhoff picture, an element ς ∈ G is

a quantum permutation. In this picture, the projections uGij are Bernoulli observables. Make
the following interpretation:

P[ς(j) = i] := P[uGij = 1 | ς] := ς(uGij). (4.1)

These probabilities can be collected in a matrix:

Φ(ς)ij := ς(uGij).
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That (uGij)
N
i,j=1 is a magic unitary implies that Φ(ς) is a doubly stochastic matrix, i.e. Φ(ς) is

in the Birkhoff polytope BN , and call the map Φ : G → BN the Birkhoff slice. It is called a
slice as it only captures an ephemeral aspect of a quantum permutation; and is not injective.

In the case of compact matrix quantum groups, there is a natural generalisation of the
Birkhoff slice, Φ : S(C(G))→MN (C). The restriction of this map to characters, an injective
map Φ : Ω(C(G)) → MN (C), has been studied previously. Immediately Woronowicz uses
this map to prove Theorem 1.3 [48]. Kalantar and Neufang [23], who associate to a (locally)

compact quantum group G, a (locally) compact classical group G̃, use the map to show that

in the case of a compact matrix quantum group, G̃ is homeomorphic to Φ(Ω(C(G))).

Assuming that P[ς(k) = `] 6= 0, the quantum permutation ς can be conditioned on ς(k) = `,
and conditional probabilities can be collected in a Birkhoff slice. Recall state conditioning:

ũG`k(ς) :=
ς(uG`k · uG`k)
ς(uG`k)

⇒ Φ(ũG`k(ς)) =

[
ς(uG`ku

G
iju

G
`k)

ς(uG`k)

]N
i,j=1

=: [P[ς(j) = i | ς(k) = `]Ni,j=1

Proposition 4.2. Let G be a quantum permutation group on N symbols. For ς ∈ G, if ς(uGij)

is non-zero, the matrix Φ(ũGijς) has a one in the (i, j)-th entry. If ς is given by a vector state

ξ ∈ H, ξ ∈ ran(π(uGij)) if and only if Φ(ς)ij = 1 •

Proposition 4.2 implies that if e.g.

Φ(ς) =


Φ(ς)11 Φ(ς)12 · · · Φ(ς)1N

Φ(ς)21 Φ(ς)22 · · · Φ(ς)2N
...

...
. . .

...
Φ(ς)N1 Φ(ς)N2 · · · Φ(ς)NN



⇒ Φ(ũG22ς) =


Φ(ũG22ς)11 0 Φ(ũG22ς)13 · · · Φ(ũG22ς)1N

0 1 0 · · · 0

0 0 Φ(ũG22ς)33 · · · Φ(ũG22ς)3N
...

...
...

. . .
...

Φ(ũG22ς)N1 0 Φ(ũG22ς)N3 · · · Φ(ũG22ς)NN


Inductively, assuming ς(uGinjn · · ·u

G
i1j1

) 6= 0

Φ(ũGinjn · · · ũ
G
i1j1

(ς))ij = P[ς(j) = i | (ς(jn) = in) � · · · � (ς(j1) = i1)].

Indeed

P[(ς(j) = i) � (ς(jn) = in) � · · · � (ς(j1) = i1)] = ς(|uGijuGinjn · · ·u
G
i1j1 |

2)

= Φ(ũGinjn · · · ũ
G
i1j1

(ς))ij · Φ( ˜uGin−1jn−1
· · · ũGi1j1(ς))injn · · ·Φ(ς)i1j1 .
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Example 4.3. No quantum permutations on three symbols As a toy example of how the
Gelfand-Birkhoff picture is a good intuition, consider the theorem that S+

3 = S3. This is just
to say that C(S+

3 ), the universal C∗-algebra generated by a 3× 3 magic unitary (uij)
3
i,j=1 is

commutative. This was known by Wang [46], but Banica, Bichon, & Collins [6] describe the
Fourier-type proof as “quite tricky”. Lupini, Mančinska, & Roberson however give a more
elementary proof [30].

By allowing talk of a quantum permutation the Gelfand–Birkhoff picture suggests why there
are no quantum permutations on three symbols. Without assuming C(S+

3 ) commutative,
consider the observable

x(1) = u11 + 2u21 + 3u31 ∈ C(S+
3 ),

which asks of a quantum permutation ς ∈ S+
3 what it maps one to. Measure ς with x(1) and

the denote the result by ς(1). The intuition might be that as soon as ς(1) is known, ς(2) and
ς(3) are entangled in the sense that measurement of x(2) cannot be made without affecting
x(3) (but without affecting x(1)). This is only intuition: it might still be possible to exhibit
e.g. the non-classical event:

(ς(3) = 3) � (ς(2) = 1) � (ς(1) = 3), (4.2)

but pausing before measuring ς(2) allows the noting of a relationship between the events
(ς(2) = 1) � (ς(1) = 3) and (ς(3) = 2) � (ς(1) = 3) that implies (4.2) cannot happen.

Suppose that ς ∈ S+
3 and assume without loss of generality that measuring ς with x(1)

gives ς(1) = 3 with non-zero probability ς(u31), and the quantum permutation transitions to
ũ31ς ∈ S+

3 .

Now consider, using the fact that u21u31 = 0 = u32u31, and the rows and columns of u are
partitions of unity:

u31 = (u12 + u22 + u32)u31 = (u21 + u22 + u23)u31

⇒ u12u31 = u23u31

⇒ u31u12 = u31u23,

by taking the adjoint of both sides. This implies that conditioning on (ς(2) = 1) � (ς(1) = 3)
is the same as conditioning on (ς(3) = 2) � (ς(1) = 3):

ũ12ũ31ς =
ς(u31u12 · u12u31)

ς(u31u12u31)
=
ς(u31u23 · u23u31)

ς(u31u23u31)
= ũ23ũ31ς (4.3)

Now

Φ(ũ12ũ31(ςξ)) =

 0 1 0
∗ 0 ∗
∗ 0 ∗

 .
Using (4.3)

Φ(ũ12ũ31ς)23 = ũ12ũ31ς(u23) = ũ23ũ31ς(u23) =
ς(u31u23u23u23u31)

ς(u31u23u31)
= 1

⇒ Φ(ũ12ũ31(ς)) =

 0 1 0
0 0 1

Φ(ũ12ũ31(ς))31 0 0

 ,
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and as Φ maps to doubly stochastic matrices, Φ(ũ12ũ31(ς)) is equal to the permutation ma-
trix (132). This implies that ũ12ũ31(ς) ∈ S+

3 is deterministic, that is its Birkhoff slice is a
permutation matrix.

Not convinced this implies that C(S+
3 ) is commutative? Here is a proof inspired by the

above.

Theorem 4.4. C(S+
3 ) is commutative.

Proof. It suffices to show that u11u22 = u22u11 by showing:

u11u22 = u11u33 = u22u33 = u22u11.

The first equality follows from:

u11(u21 + u22 + u23) = u11(u13 + u23 + u33),

the second from
(u11 + u21 + u31)u33 = (u21 + u22 + u23)u33,

and the third from

u22(u31 + u32 + u33) = u22(u11 + u21 + u31) •

4.2. Deterministic Permutations. Let  : SN ↪→ MN (C) be the embedding that sends
a permutation to its permutation matrix. A deterministic permutation in G is a quantum
permutation ς ∈ G such that Φ(ς) = (σ) for some σ ∈ SN . In this case write ς = evσ. Note

Corollary 4.5. A quantum permutation is deterministic if and only if it is a character.

Proof. Suppose that ς = evσ is deterministic. Consider the GNS representation (Hσ, πσ, ξσ)
associated to ς. Note that by Proposition 4.2

evσ(uij) = 〈ξσ, πσ(uGij)(ξσ)〉 = 0 or 1

implies that for all f ∈ C(G), there exists fσ ∈ C such that πσ(f)(ξσ) = fσξσ. Therefore

evσ(gf) = 〈ξσ, πσ(gf)ξσ〉 = 〈ξσ, πσ(g)πσ(f)(ξσ)〉
= fσ〈ξσ, πσ(g)ξσ〉 = evσ(g) evσ(f) •

On the other hand, by the homomorphism property of a character ς ∈ G
ς(uij) = ς(u2

ij) = ς(uij)
2 ⇒ ς(uij) = 0 or 1,

that is ς is deterministic •

The following can be extracted from this proof:

Corollary 4.6. A deterministic evσ ∈ G is invariant under wave function collapse •

The set of deterministic permutations therefore coincides with the set of characters GG :=
Ω(C(G)) ⊂ G, and is either empty or a finite group (Corollary 5.3). This implies that the

set GG coincides with the set G̃ of Kalantar and Neufang. A random permutation in G is
a convex combination of deterministic permutations, and the convex hull of GG is the set of
random permutations in G, which could also be denoted by Mp(GG).

The study of maximal classical subgroups such as GG = G̃ ≤ G has a long history. An
equivalent approach, seen for example in Banica and Skalski [10], is to quotient C(G) by
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its commutator ideal. Formally these approaches can give empty sets: the character space is
empty if and only if the commutator ideal is the whole algebra. Studying instead the universal
version Cu(G) at least guarantees a counit, so that e ∈ GG, and GG is a group (Corollary
5.3).

With an algebra of functions on a finite quantum permutation group F (G), a truly quantum
permutation is any quantum permutation zero on all one dimensional factors. More generally,
working with the enveloping von Neumann algebra `∞(G), in which ı : C(G) ↪→ `∞(G)
embeds, a deterministic permutation evσ ∈ G extends to a normal state ωσ on `∞(G), and
thus has a support projection pσ ∈ `∞(G) which is the smallest projection p ∈ `∞(G) such
that ωσ(p) = 1, so that for any projection q ∈ `∞(G) such that ωσ(q) = 1, pσ ≤ q. Note that

evσ(uGσ(j)j) = 1⇒ ωσ(ı(uGσ(j)j)) = 1⇒ pσ ≤ ı(uGσ(j)j)⇒ pσ = ı(uGσ(j)j)pσ = pσı(u
G
σ(j)j).

Any pair σ1 6= σ2 ∈ GG are distinguished by some σ1(j) 6= σ2(j),

pσ1pσ2 = pσ1ı(u
G
σ1(j)j)ı(u

G
σ2(j)j)pσ2 = pσ1ı(u

G
σ1(j)ju

G
σ2(j)j)pσ2 = 0.

Define:
pC =

∑
σ∈GG

pσ, (4.4)

and define a quantum permutation ς ∈ G as truly quantum if its normal extension ως ∈
S(`∞(G)) has the property that ως(pC) = 0. If GG is empty, pC = 0 and all quantum
permutations in G are truly quantum.

A quick consideration shows that if an algebra of functions on a quantum permutation is
a direct sum with a one-dimensional factor Cfi, then the state f i : fi 7→ 1 is deterministic.

Example 4.7. The Kac–Paljutkin quantum group of order eight [22], G0, has algebra of
functions structure:

F (G0) = Cf1 ⊕ Cf2 ⊕ Cf3 ⊕ Cf4 ⊕M2(C). (4.5)

Where I2 ∈M2(C) the identity, and the projection

p :=

(
0, 0, 0, 0,

(
1
2

1
2e
−iπ/4

1
2e

+iπ/4 1
2

))
,

a concrete exhibition of G0 < S+
4 (Th. 1.1 (8), [5]) comes by the magic unitary:

uG0 :=


f1 + f2 f3 + f4 p I2 − p
f3 + f4 f1 + f2 I2 − p p
pT I2 − pT f1 + f3 f2 + f4

I2 − pT pT f2 + f4 f1 + f3

 . (4.6)

The one dimensional factors give deterministic permutations, f1 = eve, f
2 = ev(34), f

3 =

ev(12) and f4 = ev(12)(34), so that GG0
∼= Z2 × Z2 < G0. Given a quantum permutation

ς ∈ G0, measurement with an x(j) will see collapse to either a random permutation or a state
on the M2(C) factor: a truly quantum permutation.

Given a truly quantum permutation ς ∈ G0, the random variables ς(1) and ς(2) are entan-
gled in the following sense: if measurement of x(1) gives ς(1) = 3, then subsequent measure-
ment of x(2) will yield ς(2) = 4 with probability one (and similarly for ς(1) = 4 and ς(2) = 3
and also x(1) � x(2)). Similarly ς(3) and ς(4) are entangled in this way: this reminds of
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S+
3 where given the measurement of ς(1), the random variables ς(2) and ς(3) are entangled.

However as soon as e.g. ς(1) is known, there is complete uncertainty about ς(3) and ς(4), for
example, for every truly quantum permutation ς ∈ G0, and J2 the matrix of all ones:

Φ(ũG0
31 ς) =

[
02

1
2J2

I2 02

]
.

With F (G0) ⊂ B(C6), nonclassical behaviour can be exhibited with e.g. the vector state
ςe5 ∈ G0:

P[(ςe5(1) = 4) � (ςe5(3) = 1) � (ςe5(1) = 3)] =
1

8
.

For a truly quantum permutation, certain sequential measurements cannot reveal quantum
behaviour. Consider a sequential measurement

x(jn) � · · · � x(j2) � x(j1);

if the constituent measurements are all x(1) and x(2) measurements; or all x(3) and x(4) mea-
surements; or a number of x(1) and x(2) measurements followed by x(3) and x(4) measure-
ments (or vice versa), then quantum behaviour will not be observed. Instead these sequential
measurements will incorrectly suggest that a quantum permutation ς ∈ G0 is a random per-
mutation (deterministic if there is a mix of x(1)/x(2) and x(3)/x(4) measurements) in the
complement of Z2 × Z2 in the dihedral group of order eight.

5. Quantum group law and identity

5.1. Quantum Group Law. In the classical case of a finite group G ≤ SN , for g2, g1 ∈ G,
the group law is encoded within the convolution of the pure states evg1 and evg2 :

(evg2 ? evg1)1j→i = (evg2 ⊗ evg1)∆(1j→i) = (evg2 ⊗ evg1)
∑
k

(1k→i ⊗ 1j→k) = 1j→i(g1g2).

The same game can be played with quantum permutations:

Definition 5.1. The quantum group law G×G→ G is the convolution, ς2 ? ς1 := (ς2⊗ ς1)∆.

Proposition 5.2. Let ς2, ς1 ∈ G be quantum permutations. The Birkhoff slice is multiplica-
tive:

Φ(ς2 ? ς1) = Φ(ς2)Φ(ς1).

Proof. Calculate

Φ(ς2 ? ς1)ij = (ς2 ? ς1)∆(uGij) = (ς2 ⊗ ς1)
∑
k

(uGik ⊗ uGkj) =
∑
k

ς2(uGik)ς1(uGkj) = [Φ(ς2)Φ(ς1)]ij •

Corollary 5.3. The set of deterministic permutations GG is either empty or a group. It is
a group if and only if ε ∈ G. Therefore if a quantum permutation group G is coamenable,
or the algebra of continuous functions C(G) ∼= Cu(G), then GG is a group. In particular, if
G ≤ S+

4 , then GG is a group •

If C(G) admits a counit, it plays precisely the role of the identity:

ς ? ε = ς = ε ? ς (ς ∈ G).

Restricted to GG, precomposing evσ with the antipode S : C(G)→ C(G) is an inverse:

evσ ◦S = evσ−1 ⇒ evσ−1 ? evσ = eve = ε.
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For a general quantum permutation, it might be more accurate to call ς−1 := ς ◦S the reverse
of ς in the sense that

ς−1(|uinjn · · ·ui1j1 |2) = ς(|ujnin · · ·uj1i1 |2) (5.1)

⇒ P[(ς−1(in) = jn) � · · · � (ς−1(i1) = j1)] = P[(ς(jn) = in) � · · · � (ς(jn) = in)]

Remarkably for a piece about compact quantum groups, the Haar state has not yet been
introduced. The following is equivalent to more conventional definitions.

Definition 5.4. A quantum permutation group G has a quantum permutation hG called the
Haar state that is the unique annihilator for the quantum group law, that is for all ς ∈ G

hG ? ς = hG = ς ? hG.

The non-zero elements of the Birkhoff slice Φ(hG) are equal along rows and columns. The
Haar state can be thought of as the “maximally random” quantum permutation: in the
classical case of SN it corresponds to uniform measure on SN .

5.2. Abelian Quantum Permutation Groups. Given a compact group G, the algebra of
continuous functions analogue of “G is abelian” is that “C(G) is cocommutative”. In this
sense an abelian compact quantum group is given by a cocommutative algebra of continuous

functions C(Γ̂), that is an algebra of continuous functions on the dual of a discrete group

Γ. As the quantum permutations in Γ̂ are in the state space of C(Γ̂), which is some class
of positive definite functions on Γ with pointwise, commutative multiplication, this idea that
duals of discrete groups are abelien is trivial through Definition 4.1.

Consider a cyclic group of order N , 〈γ〉. For ω := exp(2πi/N), consider the following vector

in F (〈̂γ〉)N :

(u〈̂γ〉),1 :=
1

N


e+ γ + γ2 + · · ·+ γN−1

e+ ωγ + ω2γ2 + · · ·+ ωN−1γN−1

e+ ω2γ + (ω2)2γ2 + · · ·+ (ω2)N−1γN−1

· · ·
e+ ωN−1γ + (ωN−1)2γ2 + · · ·+ (ωN−1)N−1γN−1

 . (5.2)

A magic unitary for 〈̂γ〉 ∼= ẐN ∼= ZN < S+
N is the circulant matrix defined by this vector:

[u〈̂γ〉]i,j :=
1

N

N∑
`=1

ω(i−j)`γ`.

Note that

γ = u
〈̂γ〉
11 + ωN−1u

〈̂γ〉
21 + ωN−2u

〈̂γ〉
31 + · · ·+ ωu

〈̂γ〉
N,1.

Let Γ = 〈γ1, . . . γk〉 be a finitely generated discrete group, with generators of finite order

N1, N2, . . . , Nk. Then the dual Γ̂ is a quantum permutation group on N :=
∑

pNp symbols
via the block magic unitary:

uΓ̂ =


uγ̂1 0 · · · 0

0 uγ̂2 · · · 0
...

...
. . . 0

0 0 · · · uγ̂k

 .
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Note that due to the fact that the uγ̂p are circulant matrices, the entries of each uγ̂p

commute. Such a construction was used to prove Theorem 3.4. It is long known that du-
als of finite groups G are quantum permutation groups, but earlier references such as [7]

placed Ĝ < S+
|G|2 . That result can be shown by considering each group element an order

|G| generator, so making for each gp a |G| × |G| magic unitary u〈̂gp〉, and forming the block

matrix diag(u〈̂g1〉, . . . , u〈̂g|G|〉). Smaller embeddings of duals of finite groups abound. An in-

duction on |G| shows that Ĝ ≤ S+
|G|. A much smaller embedding ŜN < S+

N+2 is provided by

SN = 〈(12), (12 . . . N)〉. Slightly better, for N ≥ 3, is ŜN < S+
N+1 via SN = 〈(12), (23 . . . N)〉.

In fact, except for N = 5, 6, 8, SN is generated by an element of order two and an element of

order three [35], and so S+
5 contains all the duals ŜN for N ≥ 9. The dual of any dihedral

group, including the infinite dihedral group, is a quantum subgroup of S+
4 . On the other

hand, the smallest embedding of the dual of the quaternion group is Q̂ ≤ S+
8 via Q = 〈j, k〉.

Let G be a finite group. Where Irr(G) is an index set for a maximal set of pairwise
inequivalent unitary irreducible representations ρα : G → Mdα(C), the algebra of functions
on the dual has algebra

F (Ĝ) =
⊕

α∈Irr(G)

Mdα(C).

When looking at concrete examples, sometimes it is easy to look at the regular representation:

π(F (Ĝ)) ⊂ B(C|G|), g : eh 7→ egh.

Each one dimensional representation gives a deterministic permutation. The quantum per-

mutations are positive definite functions on G. The function 1G ∈ Ĝ is the counit F (Ĝ)→ C,

and has Birkhoff slice (e). That Ĝ is abelian implies that the group of deterministic permu-
tations is abelian. If G is a simple group, either there are no truly quantum permutations,

and G ∼= Zp for a prime p, and Ĝ = G, or G
Ĝ

is the trivial group. The dual of the symmetric
group for N ≥ 2 has only two deterministic permutations: one is the counit ε = 1G, and the
other is the sign representation, an order two deterministic permutation:

∑
σ∈SN sgn(σ)δσ.

The dual of the quaternion group has four deterministic permutations G
Q̂
∼= Z2 × Z2, the

dual of a dihedral group has either two or four depending on the degree.

For every odd prime p, the semi-direct product of Zp and the multiplicative group (Zp)×,
acting by multiplication on Zp, is a group of order p(p − 1) with p characters and thus the
dual has p deterministic permutations. In this picture, Pontryagin duality for a finite abelian

group G is nothing but Ĝ having no truly quantum permutations: all the representations are
one dimensional, and hence deterministic.

Suppose that Γ = 〈γ1, . . . , γk〉 is a discrete group such that Γ̂ < S+
N . Partition the symbols

1, . . . , N into blocks B1, . . . , Bk of length |γp|. The fact that the blocks of uΓ̂ are circulant

matrices implies that if for j ∈ Bp, the measurement of a quantum permutation ς ∈ Γ̂
with x(j) will see wave function collapse such that the restriction of the state to Bp is now

deterministic in the sense that if, for r, s ∈ Bp, ς(uΓ̂
rs) 6= 0, then the matrix [Φ(ũΓ̂

rs(ς))]i,j∈Bp
is a permutation matrix. For example, for N ≥ 9, and generators σ1 of order two, and σ2 of
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order three, consider ŜN < S+
5 with blocks B1 = {1, 2} from u〈̂σ1〉 and B2 = {3, 4, 5} from

u〈̂σ2〉. Let ς ∈ ŜN be a quantum permutation. Measure with

x(4) = 3uŜN34 + 4uŜN44 + 5uŜN54 .

Suppose that the measurement yields x(4) = 5. Then the quantum permutation collapses to:

ũŜN54 (ς) =
ς(uŜN54 · u

ŜN
54 )

ς(uŜN54 )
,

and the circulant nature of u〈̂σ2〉 implies that the Birkhoff slice

Φ(ũŜN54 ς) =


α 1− α 0 0 0

1− α α 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

 ,

that is the measurement of x(4) = 5 collapses the quantum permutation in such a way that
it is deterministic on B2. Unlike in the case of S+

3 , while x(1) and x(2) are now entangled,
the measurement of x(1) can disturb the state in such a way that the complete certainty
about B2 is disturbed. The same phenomenon necessarily occurs for the dual of any non-
abelian finite groups. The circulant nature of the blocks implies that for all j1, j2 ∈ Bp, the
measurement of x(j1) determines x(j2), and all such measurements could be denoted x(Bp).
It could be speculated that the dual of a discrete group Γ = 〈γ1, . . . , γk〉 could model a k
particle “entangled” quantum system, where the p-th particle, corresponding to the block
Bp, has |γp| states, labelled 1, . . . , |γp|. Full information about the state of all particles is
in general impossible, but measurement with x(Bp) will see collapse of the pth particle to a

definite state. Only the deterministic permutations in Γ̂ would correspond to classical states.

6. Phenomena

6.1. Quasi-subgroups. In the Gelfand-Birkhoff picture a random walk on a quantum per-
mutation group is a sequence (ς?k)k≥0 in G (see [33] for more). Of particular interest are
ergodic random walks, those random walks such that the sequence converges in the weak-*
topology to the Haar state, hG. A necessary (but dramatically far from sufficient) condition
for the convolution powers (ς?k)k≥0 to converge to the Haar state are that:

Φ(ςk) = Φ(ς)k → Φ(hG).

It seems like this observation could help achieve some first partial results in the extension of the
finite quantum group random walk ergodic theorem [34] to the case of quantum permutation
groups, alas there are many quantum permutations ς 6= hG such that Φ(ς) = Φ(hG). There
are even examples of random permutations whose associated random walk is not ergodic, for
example ν ∈Mp(S3) given by:

ν =
1

3
(ev(12) + ev(13) + ev(23))⇒ Φ(ν) =

1

3
J3 = Φ(hS3).

Very crude results are available though: for example, if G < S+
N and any non-trivial N -th

root of unity is an eigenvalue of Φ(ς), then the associated random walk is not ergodic. A
qualitative aspect would be that if Φ(ς) is such that the convergence of Φ(ς)k → Φ(hG) is
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slow, then the associated random walk on G should take a long time to converge to the Haar
state.

If G is a classical finite group, subsets S ⊂ G that are closed under the group law are sub-
groups. More generally, for the algebra of continuous functions C(G) on a classical compact
group, states C(G)→ C correspond via integration to Borel probability measures in Mp(G),
and in the context of this work could be called random permutations (of an infinite set if G
is infinite). In this context the quantum group law might be called the random group law,
and the Kawada–Itô theorem says that random permutations idempotent with respect to the
random group law are Haar measures/states on compact subgroups of G [25].

Suppose that H ≤ G by π : C(G)→ C(H). Quantum permutations ς ′2, ς
′
1 ∈ H are quantum

permutations ς2, ς1 ∈ G by ςi := ς ′i ◦ π. Note that

ςi(kerπ) = ς ′iπ(kerπ) = 0,

similarly

(ς2 ? ς1) kerπ = (ς2 ⊗ ς1)∆(kerπ) = (ς ′2 ⊗ ς ′1)(π ⊗ π)∆(kerπ) = (ς ′2 ⊗ ς ′1)∆π(kerπ) = 0,

so that H is closed under the quantum group law of G, and the Haar state of H in G, hH ◦ π,
is an idempotent state in G, called a Haar idempotent.

Compact quantum groups, however, can have non-Haar idempotents. These are quantum
permutations ς ∈ G idempotent with respect to the quantum group law, ς ? ς = ς, that
are not the Haar state on any compact subgroup. In the Gelfand picture, idempotent states
correspond to measures uniform on virtual objects called quasi-subgroups2. Pal’s idempotents
in the Kac–Paljutkin quantum group provide examples of non-Haar idempotents [39]. As
the current work allows us to talk of a set of quantum permutations S ⊂ G, where f1, f4

are dual to f1, f2 ∈ F (G0), and E11, E22 dual to E11, E22 in the M2(C) factor of F (G0),
consider the convex hulls Si := co({f1, f4, Eii}) ⊂ G0, with associated idempotent states
1
4f

1 + 1
4f

4 + 1
2E

ii ∈ G0. Consider ς ∈ Si. The Birkhoff slice is given by, for some α, β ∈ [0, 1]:

Φ(ς) =

(
βMα

(1−β)
2 J2

(1−β)
2 J2 βMα

)
; where Mα =

(
α 1− α

1− α α

)
.

Quasi-subgroups of finite quantum groups behave very much like quantum subgroups: they
are closed under the quantum group law (Prop. 3.12, [34]), they contain the identity ε, and
they are closed under precomposition with the antipode ([29]).

Let Γ = 〈γ1, . . . , γk〉 be a discrete group with generators of finite order. The quasi-

subgroups SΛ ⊂ Γ̂ are given by non-trivial subgroups Λ ≤ Γ:

SΛ := {ς ∈ Γ̂ : ς(λ) = 1 for all λ ∈ Λ}.
The associated idempotent state is 1Λ, and gives a quantum subgroup only when Λ�Γ. This

is an illustration of the fact that quotients Γ → Γ/Λ linearly extend to quotients C(Γ̂) →
C(Γ̂/Λ), which give rise to quantum subgroups Γ̂/Λ < Γ̂

π : C(Γ̂)→ C(Γ̂/Λ),
∑
γ∈Γ

αγγ 7→
∑
γ∈Γ

αγ [γ].

2this terminology is from [24] and has nothing to do with cancellative magmas
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Suppose that γp ∈ Λ. Then, where Φ(·)Bp refers to the u〈̂γp〉 block of uΓ̂:

Φ(1Λ)Bp = I|γp|,

but as Φ is multiplicative, for k ∈ N:

Φ(1?kΛ )Bp = I|γp| 6→
1

|γp|
J|γp| = Φ(h

Γ̂
)Bp ,

so that the random walk given by 1Λ ∈ Γ̂ is not ergodic.

Restricting now to finite Γ, the algebra F (Γ̂) is also a von Neumann algebra and so contains

the support projections of all quantum permutations ς ∈ Γ̂. The support projection of the

idempotent quantum permutation 1Λ ∈ Γ̂ is χΛ =
∑

λ∈Λ λ/|Λ|, and the random walk given

by 1Λ remains concentrated on SΛ in the sense that 1?kΛ (χΛ) = 1 for all k ∈ N. If no γp ∈ Λ,
and Γ ≤ S+

N , then consider λ ∈ Λ and Γ < S+
N+|λ| via:

u
Γ̂<S+

N+|λ| =

(
uΓ̂ 0

0 u〈̂λ〉

)
.

Then the non-ergodicity of the random walk associated with 1Λ can be seen in the λ block:
Φ(1Λ)Bλ = I|λ|. Note that it is not required for ς ∈ SΛ that ς(γ) = 0 for γ in the complement
of Λ in Γ. Instead like in the classical, commutative case of a random permutation ν ∈Mp(Γ)

being supported on Λ < Γ exhibited by ν?k(1Γ−Λ) = 0 for all k ∈ N, if ς(γ) = 1 for all λ ∈ Λ,

so supported on the quasi-subgroup SΛ ⊂ Γ̂, then the role of 1Γ−Λ is played by the projection

χΛ := e− χΛ ∈ F (Γ̂), and it is the case that ς?k(χΛ) = 0 for all k ∈ N.

In the case of finite quantum groups, an idempotent state φS is associated to a group-
like projection 1S, which is also its support projection (see [34] for more including original
references), and therefore it is tenable to define:

Definition 6.1. Let G be a finite quantum permutation group with an idempotent state
φS ∈ G and associated group-like projection 1S ∈ F (G). The associated quasi-subgroup
S ⊂ G is given by:

S := {ς ∈ G : ς(1S) = 1} . (6.1)

A very good question is: why are quasi-subgroups given by non-Haar idempotents not
considered quantum subgroups? The conventional analysis for an idempotent state φ ∈ G on
a finite quantum group G is to consider the ideals of the associated idempotent states:

Nφ := {g ∈ F (G) : φ(g∗g) = 0} .

Franz & Skalski (Th. 4.5, [18]) show that φ is a Haar idempotent precisely when Nφ is
two-sided, equivalently self-adjoint, equivalently S-invariant.

That not all quasi-subgroups are subgroups can be explained in the language of measure-
ment. For example for Pal’s quasi-subgroup S1 := co({f1, f4, E11}) ⊂ G0, the support of the
idempotent state

φ1 =
1

4
f1 +

1

4
f4 +

1

2
E11,
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is 1S1 := f1 + f2 + E11. Consider ς := E11 ∈ S1:

P[ς(3) = 2] =
1

2
,

and so the quantum permutation conditioned on ς(3) = 2 is:

ũG0
13 ς =

ς(uG0
13 · u

G0
13 )

ς(uG0
13 )

= 2E11(uG0
13 · u

G0
13 ).

But:

ũG0
13 ς(1S1) = 2E11(uG0

13 1S1u
G0
13 ) =

1

2
,

and this implies with (6.1) that measurement with uG0
13 has conditioned the quantum permu-

tation outside the quasi-subgroup.

As another example, consider Ŝ3 ≤ S+
N given by uŜN = diag(u〈̂(12)〉, . . . ). The quasi-

subgroup S〈(23)〉 ⊂ Ŝ3 is the set of quantum permutations associated with the non-Haar
idempotent 1〈(23)〉. The associated group-like projection is χ〈(23)〉 = (e+ (23))/2, so that:

S〈(23)〉 :=
{
ς ∈ Ŝ3 : ς(e) = ς((23)) = 1

}
.

Take 1〈(23)〉 ∈ S〈(23)〉 so that P[1〈(23)〉(1) = 1] = 1/2. Then

ũŜ3
111〈(23)〉(δ(23)) =

1〈(23)〉(u
Ŝ3
11δ23u

Ŝ3
11 )

1〈(23)〉(u
Ŝ3
11 )

= 21〈(23)〉

(
1

4
((13) + (23) + (123) + (132))

)
=

1

2
,

so that ũŜ3
111〈(23)〉 6∈ S〈(23)〉.

So quasi-subgroups that are not quantum subgroups are just like quantum subgroups: until
you start measuring them and it is seen that they are not stable under wave function collapse.
It can be shown that for C∗-algebras generated by projections such as algebras of functions
F (G) on finite quantum permutation groups, if p ∈ F (G) is a projection and J := F (G)p is
a left but not both-sided ideal, then there exists a projection q ∈ F (G) such that qpq 6∈ J .
That implies that for every quasi-subgroup S ⊂ G that is not a quantum subgroup, there is
a quantum permutation ς ∈ S and a projection q ∈ F (G) such that q̃ς 6∈ S.

This cannot happen with a genuine quantum subgroup H ≤ G given by π : F (G)→ F (H).
Let 1H ∈ F (G) be the support projection of the Haar idempotent hH ◦ π, and define H ≤ G
by

H := {ς ∈ G : ς(1H) = 1}.
Let ς ∈ H be measured with a projection p ∈ F (G). Suppose ς(p) > 0, and given ς ∈ H,
p = 1 has been observed with wave function collapse to p̃ς. Then, where qH := 1G − 1H, and
1H ≥ pς1H = pς the support projection of ς,

p̃ς(qH) =
ς(pqHp)

ς(p)
=
ς(pςpqHp)

ς(p)
=
ς(pς1HpqHp)

ς(p)
= 0,

as 1H is central [18]. Therefore p̃ς(1H) = 1 so that p̃ς ∈ H.
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6.2. Cyclic Cosets. Being concentrated on a quasi-subgroup is one barrier to a random walk
(ς?k)k≥0 converging to the Haar state. Another is periodicity. In the finite case, assuming that
a random walk is not concentrated on a quasi-subgroup, the support of ς for a non-ergodic
random walk is concentrated on a cyclic coset of quasi-subgroup:

Definition 6.2. [34] Let G be a finite quantum permutation group. A quantum permutation
ς ∈ G is supported on a cyclic coset of a proper quasi-subgroup if there exists a pair of
projections p0, p1, such that p0p1 = 0, p0 + p1 ≤ 1G, ς(p1) = 1, p0 is a group-like projection,
(ς ⊗ IF (G))∆(p1) = p0, and there exists d > 1 such that ((ς ⊗ IF (G))∆)d(p1) = p1.

In the classical case, p0, p1 are indicator functions 1N , 1Ng for some N �H, H ≤ G, such
that, for some d > 1, H/N ∼= Zd. In the irreducible case, where ς is not concentrated on a
subgroup, N �G, and the p0, p1 are elements of a full partition of 1G.

In the ‘abelian’, dual group case a result of Freslon [19] can be illustrated using the Birkhoff

slice. Freslon considers the case where ς ∈ Γ̂ coincides with a non-trivial character on Λ < Γ.
In the fashion of the previous section, let λ ∈ Λ give a function λ ∈ F (Γ̂) and consider Γ̂ ≤ S+

N

by including λ in the set of generators forming the magic unitary uΓ̂. If ς(λ) = 1 and ς is a
character so that ς(λ`) = 1 then ς is concentrated on the quasi-subgroup SΛ. Therefore let

ς(λ) = eiθ, say e2πim/|λ|. Considering (5.2), and recalling ς restricted to Λ is a character, it is
the case that:

Φ(ς)Bλ = ((12 . . . |λ|)|λ|−m+1),

and the multiplicative nature of the Birkhoff slice implies that Φ(ς?k)Bλ is periodic, not
converging to Φ(h

Γ̂
)Bλ .

Note that after measurement with x(Bp), ς ∈ Γ̂ collapses quantum permutation whose
restriction to 〈γp〉 is a character. This follows from the fact that |ς(γ)| ≤ 1 and the form
of (5.2). In the classical case, a random walk given by ν ∈ Mp(G) which is irreducible but
periodic is concentrated on a coset Ng of a proper normal subgroup, and the subsequence
ν?(k|g|+1) converges to the uniform measure on Ng, that is the convolution of an idempotent
hG and a character/deterministic permutation evg:

ν?(k|g|+1) → hN ? evg , and ν?(k|g|+s) → hN ? evgs .

In this case, evg commutes with the idempotent hH and so:

(hN ? evg)
?k = hN ? evgk .

In the case of irreducible random walks on quantum permutation groups it is not always the
case that periodicity comes from a character/deterministic permutation commuting with an

idempotent. It can be shown that the random walk on Q̂ given by:

ς = δ1 − δ−1 − iδj + iδ−j

is irreducible and periodic, but is not equal to any character/deterministic permutation on

Q̂ times an idempotent state. Instead passing to 〈j〉 < Q, the character 〈j〉 → C, χ : js 7→
exp(3πis/2), is such that ς = 1〈j〉χ = χ1〈j〉, but χ is not equal to a restriction of a character
on Q. Therefore, a character evg ∈ G commuting with an idempotent is sufficient but not
necessary for periodic behaviour. One final remark, in the classical case, it is not the case
that periodic implies concentrated on a coset of a normal subgroup. What is the case is that
periodic implies concentrated on a coset of a proper normal subgroup N �H of a subgroup
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H ≤ G. In this case, there is the convolution of a deterministic permutation evg ∈ H and an
idempotent hN , but every deterministic permutation evg ∈ H is a deterministic permutation
evg ∈ G. This is not generally true in the quantum case. The final possibility might be a
quantum or even random permutation ς ∈ G commuting with an idempotent φS such that
ς?k = ε, however this is impossible because such a quantum permutation satisfies:

Φ(ς?k) = Φ(ς)k = IN ,

but the only invertible doubly stochastic matrices come from deterministic permutations.

6.3. Fixed Points Phenomena and Quantum Transpositions. Given a quantum per-
mutation group G ≤ S+

N with algebra of functions C(G), and fundamental representation

uG ∈MN (C(G)), define the number of fixed points observable:

fixG :=

N∑
j=1

uGjj .

In general, the spectrum of fixG contains non-integers: indeed by looking at a faithful repre-

sentation π(C(D̂∞)) ⊂ B(L2([0, 1],M2(C))) [40], it can be seen that σ(fixD̂∞) = [0, 4]. For
fix in universal C(S+

N ), σ(fix) = [0, N ]. When the spectrum of fixG is finite, such as in the
case of a finite quantum permutation group, there is a spectral decomposition in C(G):

fixG =
∑

λ∈σ(fixG)

λ pλ, (6.2)

and if ς ∈ G is such that

P[fixG(ς) = λ] = ς(pλ) > 0,

then

p̃λς :=
ς(pλ · pλ)

ς(pλ)
∈ G,

is a quantum permutation with λ fixed points, as is any quantum permutation with ς(pλ) = 1.
Note that if a quantum permutation has λ fixed points, the trace of Φ(ς) is λ.

Definition 6.3. Where fixG =
∑N

i=1 u
G
ii has spectral decomposition (6.2), a quantum per-

mutation in a finite quantum permutation group G < S+
N has λ fixed points if ς(pλ) = 1.

A quantum permutation in G < S+
N with N − 2 fixed points is a quantum transposition in

G < S+
N .

Define a magic unitary for Ŝ3 < S+
4 by

uŜ3 =

[
u〈̂(12)〉 0

0 u〈̂(13)〉

]
.

The spectrum σ(fixŜ3) = {0, 1, 3, 4}. The deterministic permutations eve (given by the
trivial representation) and ev(12)(34) (given by the sign representation) have four and zero
fixed points. A quantum permutation with three fixed points is:

ς = δe +
1

2
δ(12) +

1

2
δ(13) − δ(23) −

1

2
δ(123) −

1

2
δ(132).
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It has Birkhoff slice:

Φ(ς) =


3/4 1/4 0 0
1/4 3/4 0 0
0 0 3/4 1/4
0 0 1/4 3/4

 .

Placing Ŝ3 < S+
8 via uŜ3<S

+
8 = diag(uŜ3 , uŜ3) is one way to get a transposition, however note,

reminding of A8 � S8, there is a periodicity to ς ∈ S+
8 :

lim
k→∞

ς?2k = φ0 := δe + δ(23) and lim
k→∞

ς?(2k+1) = φ1 := δe − δ(23).

Note φ0 = δe + δ(23) ∈ Ŝ3 is an idempotent state with support projection p0 := (e+ (23))/2 ∈
F (Ĝ), and φ1 has support projection p1 := (e− (23))/2. It is the case that:

ev(12)(34) = 1〈(123)〉 − 1{(12),(13),(23)}

and so

φ1 = ev(12)(34) φ0 = φ0 ev(12)(34) .

This implies that:

φ?k1 = (φ0 ev(12)(34))
?k = φ0 ev(12)(34)k =

{
φ0, if k even

φ1, if k odd.
.

The quantum permutation ς is concentrated on p1, a cyclic coset of the quasi-subgroup

S〈(23)〉 ⊂ Ŝ3 encountered in the previous section. This implies that the support of the ir-
reducible random walk associated with ς alternates between p0 and p1. On the technical
level, this is unlike the periodicity of the state uniform on permutations of odd parity because

φ0 is not the Haar state on a quantum subgroup of Ŝ3, so it doesn’t make sense to say that
〈(23)〉 is normal in S3. See [34] for more.

Another quantum phenomenon is that there are quantum permutations with N − 1 fixed

points which are not the identity. Consider the finite quantum group Ŝ4 < S+
5 given by the

magic unitary:

uŜ
+
4 =

(
u〈̂(12)〉 0

0 u
̂〈(234)〉

)
∈M5(F (Ŝ4)).

Representing π(F (Ŝ4)) ⊂ B(C24) with the regular representation, and employing a CAS, it
can be found that

σ(fixŜ4) =

{
0,

5−
√

17

2
, 1, 2, 3, 4,

5 +
√

17

2
, 5

}
,

so that the phenomenon of quantum permutations with a non-integer number of fixed points

occurs for Ŝ4. Define subsets of S4:

X1 := 〈(34)〉, X2 := (12)〈(34)〉, X3 := {σ : σ(1) = 1}\X1, X4 := {σ : σ(2) = 2}\X1,

X5 := {(13)(24), (14)(23), (1423), (1324)}, and X6 := S4

∖(
5⋃
`=1

X`

)
.
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Then the following quantum permutation has four fixed points and is not the identity/counit:

ς := 1X1 +
1

3
1X2 +

5

6
1X3 −

1

2
1X4 −

2

3
1X5 −

1

6
1X6 , (6.3)

and has Birkhoff slice:

Φ(ς) =


2/3 1/3 0 0 0
1/3 2/3 0 0 0
0 0 8/9 1/18 1/18
0 0 1/18 8/9 1/18
0 0 1/18 1/18 8/9


As the convolution power in Ŝ4 is pointwise multiplication, ς?k → 1X1 , and there is conver-
gence to a non-Haar idempotent.

For any integer ` ≥ 2, quantum permutation groups G ≤ S+
N are also quantum permutation

groups G < S+
`N via:

uG<S
+
`N := diag(uG, uG, . . . , uG) ∈M`N (C(G)),

and so if ς ∈ G has N − 2
` fixed points, ς ∈ G ≤ S`N is a transposition, that is it has `N − 2

fixed points. Therefore, ς ∈ Ŝ4 given by (6.3) is a quantum transposition ς ∈ Ŝ4 < S+
10 whose

convolution powers do not exhibit periodicity.

When σ(fixG) is no longer finite pass to the universal enveloping von Neumann algebra
`∞(G) of C(G), which contains ı : C(G) ↪→ `∞(G) and the spectral projections of elements
of C(G). Consider ı(fixG) ∈ `∞(G), with spectral projections 1S(fixG), in particular pλ :=
1{λ}(fixG). Where ως is the normal extension of ς ∈ G, define:

P[ς has λ fixed points] := ως(pλ),

and say that ς has λ fixed points if ως(pλ) = 1.

Let π : C(S+
N ) → C(G) give a quantum subgroup G < S+

N , with fixG of finite spectrum.

Where ς0 ∈ G has λ0 fixed points, the quantum permutation ς := ς0 ◦ π ∈ S+
N has λ0 fixed

points in S+
N . Consider the C∗-algebras generated by fix and fixG, C∗(fix) ∼= C([0, N ]), and,

C∗(fixG) ∼= C(σ(fixG)). For f ∈ C∗(fix),

π(f) =
∑

λ∈σ(fixG)

f(λ)δλ.

By assumption, for λ0 ∈ σ(fixG), ς0(δλ0) = 1 and so

ς(f) = ς0

 ∑
λ∈σ(fixG)

f(λ)δλ

 = f(λ0)⇒ ς = evλ0 .

The enveloping von Neumann algebra C∗(fix)∗∗ ∼= `∞([0, N ]) ⊂ B(`2([0, N ])) and ς extends
to ως = evλ0 ∈ `∞([0, N ])∗. The spectral projection 1{λ0}(fix) is:

`2([0, N ]) 3 f 7→ f(λ0)δλ0 ∈ `2([0, N ]), (6.4)

so that 1{λ0}(fix) may be identified with δλ0 ∈ `∞([0, N ]) and indeed ως(1{λ0}(fix)) =
evλ0(δλ0) = 1, so that ς also has λ0 fixed points.



A STATE-SPACE APPROACH TO QUANTUM PERMUTATIONS 31

The quantum transposition ϕtr studied by Freslon, Teyssier and Wang [20] is a central
state, and it is the only central quantum transposition in S+

N . Central states such as ϕtr have

some nice properties: that for any irreducible representation n ∈ N≥0, ϕtr(ρ
(n)
ij ) = ϕtr(n)δi,j ,

and as the matrix elements of the irreducible representations form a basis of C(S+
N ), they are

completely determined by their restriction to the central algebra C(S+
N )0 generated by the

characters as:

ϕtr(χn) =

dn∑
i=1

ϕtr(ρ
(n)
ii ) = dnϕtr(n).

The central algebra is commutative, and it follows from spectral theory that:

C(S+
N )0
∼= C([0, N ]).

The isomorphism from the characters to C([0, N ]) is given by χn 7→ (t 7→ U2n(
√
t/2)), where

Un are the Chebyshev polynomials of the second kind, and therefore, restricted to the central
algebra, χ0 + χ1 = fix. The state ϕtr is given by evN−2 ∈ C([0, N ])∗. The normal extension
of ϕtr is also evN−2, and indeed evN−2(pN−2) = 1, and because of (6.4), evN−2 is the unique
central quantum transposition in S+

N .

6.4. Maximality of SN < S+
N . As mentioned in Section 3.2, there is the following maximal-

ity result:

Theorem 6.4. For N ≤ 5, there is no intermediate SN < G < S+
N •

The result is conjectured to be true for N > 5 also. A strong way to interpret the conjecture
is to say that all that has to be added to SN to get the whole of S+

N is an arbitrary quantum

permutation. In this section the uij ∈ C(S+
N ), and, without making it notationally explicit,

all quantum permutations are assumed elements of S+
N via, for ς ′0 ∈ G and evσ ∈ SN :

ς0(uij) = ς ′0 ◦ πG(uij) = ς ′0(uGij), and evσ(uij) = ev′σ ◦πSN (uij) = 1j→i(σ)

It is thus possible to convolve quantum permutations in G < S+
N with deterministic permu-

tations in SN but not in GG.

Let G0 < S+
N and ς ′ ∈ G0 any (non-classical) quantum permutation. Working with Cu(G0),

and hSN the Haar state on F (SN ) define:

ς ′′ :=
1

2
ε+

1

2
ς ′ ∈ G0, and ς := hSN ? ς

′′ ∈ S+
N .

The Cesáro averages

ςn :=
1

n

n∑
k=1

ς?k
w∗−→ φς ,

an idempotent state in S+
N . There are three possibilities here.

(1) φς = hS+
N

, the Haar state on S+
N ;

(2) φς = hG, for an intermediate quantum group SN < G < S+
N ;

(3) φς is a non-Haar idempotent, giving an intermediate quasi-subgroup SN ( S ( S+
N .
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The conjecture of maximality SN < S+
N believes that (2) cannot happen but does not preclude

(3). If neither (2) nor (3) can happen, then any non-classical quantum permutation in any
quantum permutation group together with hSN generates the whole of S+

N .

This section illustrates how convolving deterministic permutations with non-classical quan-
tum permutations can ‘move’ the quantumness around. This first result shows that deter-
ministic permutations can be used to permute labels in the following sense:

Proposition 6.5. Suppose that ς0 ∈ G < S+
N is such that:

α := P[(ς0(jn) = in) � · · · � (ς0(j1) = i1)] = ς0(|uinjn · · ·ui1j1 |2) > 0,

then ς := evσ2 ?ς0 ? evσ−1
1

is such that:

P[(ς(σ1(jn)) = σ2(in)) � · · · � (ς(σ1(j1)) = σ2(i1))] = ς(|uσ2(in)σ1(jn) · · ·uσ2(i1)σ1(j1)|2) = α.

Proof. Calculate ς(|uσ2(in)σ1(jn) · · ·uσ2(i1)σ1(j1)|2)

= (evσ2 ⊗ς0 ⊗ evσ−1
1

)∆(2)(uσ2(i1)σ1(j1) · · ·uσ2(in)σ1(jn) · · ·uσ2(i1)σ1(j1))

= (evσ2 ⊗ς0 ⊗ evσ−1
1

)∆(2)(uσ2(i1)σ1(j1)) · · ·∆(2)(uσ2(in)σ1(jn)) · · ·∆(2)(uσ2(i1)σ1(j1))

= (evσ2 ⊗ς0 ⊗ evσ−1
1

)

 N∑
k1,k2=1

uσ2(i1)k1 ⊗ uk1k2 ⊗ uk2σ1(j1)

×
· · ·

 N∑
k2n−1,k2n=1

uσ2(in)k2n−1
⊗ uk2n−1k2n ⊗ uk2nσ1(jn)

×
· · ·

 N∑
k4n−3,k4n−2=1

uσ2(i1)k4n−3
⊗ uk4n−3k4n−2 ⊗ uk4n−2σ1(j1)


=

N∑
k1,...,k4n−2=1

evσ2(uσ2(i1)k1 · · ·uσ2(in)k2n−1
· · ·uσ2(i1)k4n−3

)×

ς0(uk1k2 · · ·uk2n−1k2n · · ·uk4n−3k4n−2) evσ−1
1

(uk2σ1(j1) · · ·uk2nσ1(jn) · · ·uk4n−2σ1(j1))

The deterministic permutations are characters and moreover evσ(uij) = 1 if and only if
σ(j) = i, and this implies k1 = i1, . . . , k2n−1 = in, . . . , k4n−3 = i1 and also k2 = j1, . . . , k2n =
jn, . . . , k4n−2 = j1 and so

ς(|uσ2(in)σ1(jn) · · ·uσ2(i1)σ1(j1)|2) = ς0(ui1j1 · · ·uinjn · · ·ui1j1) = α > 0 •

Consider, for example, SN < S+
N and G0 < S+

N given by uG0<S
+
N = diag(uG0 ,1G0 , · · · ,1G0).

The quantum permutations in G0 can be combined with deterministic permutations to get
new quantum permutations in S+

N , for example, where ςe5 is the vector state on G0, for
ς := ev(14) ?ςe5 ? ev(16)

P[(ς(6) = 3) � (ς(4) = 2) � (ς(6) = 1)] = ς(|u36u24u16|2) = ςe5(u41u24u31u24u41) =
1

8
> 0.
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Proposition 6.6. For any quantum permutation ς ∈ G < S+
N and σ ∈ SN :

(ς ? evσ ?ς)(|ui4j4ui3j3ui2j2ui1j1 |2)

=
N∑

k1,··· ,k7=1

ς(ui1σ(k1)ui2σ(k2)ui3σ(k3)ui4σ(k4)ui3σ(k5)ui2σ(k6)ui1σ(k7))×

ς(uk1j1uk2j2uk3j3uk4j4uk5j3uk6j2uk7j1) •

This can be used to show that, for example, where ς = ςe5 ? ev(23) ?ςe5

ς(|u11u32u13u31|2) = P[(ς(1) = 1) � (ς(2) = 3) � (ς(3) = 1) =� (ς(1) = 3)] > 0.

As a final, isolated, example, note that measurement of ςe5 ∈ G0 can see 3 7→ 1 and
subsequently 3 7→ 2, however the probability that it ever subsequently maps three to anything
other than one or two is zero. However the quantum permutation ς := ev(23) ?ςe5 ?ev(24) ?ςe5 ?

ev(23) ∈ S+
N is such that:

P[(ς(1) = 4) � (ς(2) = 2) � (ς(1) = 3) � (ς(2) = 2) � (ς(1) = 1)] > 0.

To show this is to show that ς(|u41u22u31u22u11|2) > 0. This quantity is equal to

= (ev(23)⊗ςe5 ⊗ ev(24)⊗ςe5 ⊗ ev(23))∆
(4)(u11u22u31u22u41u22u31u22u11)

=

4∑
k1,...,k36=1

ev(23)(u1k1u2k2u3k3u2k4u4k5u2k6u3k7u2k8u1k9)

×ςe5(uk1k10 · · ·uk9k18) ev(24)(uk10k19 · · ·uk18k27)ςe5(uk19k28 · · ·uk27k36)

× ev(23)(uk281uk292uk301uk312uk321uk332uk341uk352uk361)

=
4∑

k10,...,k27

ςe5(u1k10u3k11u2k12u3k13u4k14u3k15u2k16u3k17u1k18)

× ev(24)(uk10k19 · · ·uk18k27)ςe5(uk191uk203uk211uk223uk231uk243uk251uk263uk271)

Now consider that the ordered pairs

(k10, k19), . . . , (k18, k27)
!
∈ {(1, 1), (2, 4), (3, 3), (4, 2)}.

Recall that ςe5 is pre-composed with πG0 : C(S+
N ) → F (G0). Considering the algebra struc-

ture (4.5) on F (G0), the magic unitary uG0<S
+
N = diag(uG0 ,1G0 , . . . ,1G0) (4.6), and that

ςe5 is zero on the one-dimensional factors, there is only one choice for the ordered pairs
(k10, k19), . . . , (k18, k27), namely alternating (3, 3) and (1, 1), except for (k14, k23) = (2, 4).
This leaves:

ς(|u41u22u31u22u11|2) = ςe5(u13u31u23u31u42u31u23u31u13)ςe5(u31u13u31u13u41u13u31u13u31),

which is strictly positive.
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6.5. Orbits and Orbitals. One barrier to attacks on the maximality conjecture via methods
inspired by the previous section is the non-transitivity of orbitals. The study of orbits and
orbitals was initiated by Lupini, Mančinska, and Roberson [30]. Banica and Freslon [9]
independently studied orbits. In this section one-orbitals (or orbits), two-orbitals, and three-
orbitals are studied, in the language of quantum permutations, and a new (conjectured)
counter-example to the transitivity of the three-orbital relation is given.

In the case of G < S+
N , for any non-zero uGij ∈ C(G), there is a (pure) quantum permutation

ς ∈ G such that ς(j) = i with probability one. Working in the universal, Cu(G), setting, define
the orbit relation, or one-orbital relation, on N by i ∼1 j if uGij 6= 0. The identity ε ∈ G is

a quantum permutation that fixes all points, so uGii(ε) = 1, therefore uGii 6= 0, and thus ∼1 is
reflexive. Suppose that i ∼1 j so uGij 6= 0, and ς ∈ G a (pure) quantum permutation such that

ς(uGij) = ‖uGij‖ = 1, then j ∼1 i by the reverse of ς, ς−1 := ς ◦ S, as

P[ς−1(i) = j] = ς−1(uGji) = ς(S(uGji)) = ς(uGij) = 1.

Let ς2 and ς1 be such that ς2(uGi`) = ‖uGi`‖ = 1 and ς1(uG`j) = ‖uG`j‖ = 1. Consider the quantum
permutation ς2 ? ς1 ∈ G:

ς2 ? ς1(uGij) = (ς2 ⊗ ς1)∆(uGij) =
N∑
k=1

ς2(uGik)ς2(uGkj).

However if ς2(uGi`) = 1 and ς1(uG`j) = 1, all of the terms with k 6= ` are zero, so

ς2 ? ς1(uGij) = ς2(uGi`)ς1(uG`j) = 1,

and so uGij 6= 0, so that ∼1 is an equivalence relation on N . This can also be seen by considering

Φ(ς2 ? ς1) = Φ(ς2)Φ(ς1).

Higher order orbitals may also be defined as relations on Nk. Say that:

(im, · · · , i1) ∼m (jm, . . . j1)⇔ uGimjm · · ·u
G
i1j1 6= 0.

Similarly to the above, with ε ∈ G, and G closed under reversal, ∼m is reflexive and symmetric.
The following is Lemma 3.4 from [30], but with the proof rewritten in the language of the
current work:

Proposition 6.7. The two-orbital, ∼2, is transitive.

Proof. Note that for projections p, q ∈ C(G), the C∗-identity gives:

‖pq‖2 = ‖(pq)∗pq‖ = ‖qpq‖,

and so pq = 0 exactly when qpq = 0. Suppose that uGi2`2u
G
i1`1
6= 0 and uG`2j2u

G
`1j1
6= 0 so that

uGi1`1u
G
i2`2

uGi1`1 6= 0 and uG`1j1u
G
`2j2

uG`1j1 6= 0, so that (i2, i1) ∼2 (`2, `1) and (`2, `1) ∼2 (j2, j1).

Let ς ′2, ς ′1 be such that ς ′2(uGi1`1u
G
i2`2

uGi1`1) = ‖uGi1`1u
G
i2`2

uGi1`1‖ 6= 0, and ς ′1(uG`1j1u
G
`2j2

uG`1j1) =

‖uG`1j1u
G
`2j2

uG`1j1‖ 6= 0. This means that ς ′2 maps `2 to i2 after mapping `1 to i1 with non-zero

probability (and similar for ς ′1). Note in particular, by e.g. (2.1), that ς ′2(uGi1`1), ς ′1(uG`1j1) 6= 0.
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Conditioning ς ′2 and ς ′1 so that they map `1 → i1 and j1 → `1 with probability one gives

quantum permutations ς2 := ũGi1`1ς
′
2 and ς1 := ũG`1j1ς

′
1 that can still map `2 → i2 and j2 → `2;

ς2(uGi2`2) =
ς ′2(uG`1j1u

G
i2`2

uG`1j1)

ς ′2(uG`1j1)
=
‖uG`1j1u

G
i2`2

uG`1j1‖
ς ′2(uG`1j1)

> 0,

with similar for ς1. From here

(ς2 ? ς1)(uGi1j1u
G
i2j2u

G
i1j1) = (ς2 ⊗ ς1)∆(uGi1j1u

G
i2j2u

G
i1j1)

=
N∑

k,k1,k2=1

ς2(uGi1k1u
G
i2ku

G
i1k2)ς1(uGk1j1u

G
kj2u

G
k2j1)

=

N∑
k,k1,k2=1

ς ′2(uGi1`1u
G
i1k1

uGi2ku
G
i1k2

uGi1`1)

ς ′2(uGi1`1)

ς ′1(uG`1j1u
G
k1j1

uGkj2u
G
k2j1

uG`1j1)

ς ′1(uG`1j1)

All of the terms with k1 6= `1 or k2 6= `1 are zero:

⇒ (ς2 ? ς1)(uGi1j1u
G
i2j2u

G
i1j1) =

N∑
k=1

ς2(uGi2k)ς1(uGkj2)

= ς2(uGi2`2)ς1(uG`2j2)︸ ︷︷ ︸
>0

+
∑
k 6=`2

ς2(uGi2k)ς1(uGkj2)︸ ︷︷ ︸
≥0

> 0.

Therefore uGi1j1u
G
i2j2

uGi1j1 6= 0, so that uGi2j2u
G
i1j1
6= 0 so that (i2, i1) ∼2 (j2, j1), that is ∼2 is

transitive (and thus an equivalence relation on N ×N •

Lupini, Mančinska, and Roberson [30] (as well as Banica [3]) expressed the belief that ∼3

is not transitive in general. The algebra of functions on a finite quantum group, as a finite
dimensional C∗-algebra, is a direct sum of F (GG), the direct sum of the one dimensional
factors, and B, the direct sum of the higher dimensional factors. Counterexamples to ∼3

transitive can occur in the finite case when for the elements along the diagonal uGiiF (G) ⊂
F (GG); that is if a quantum permutation ς ∈ G is such that P[ς(i) = i] = ς(uGii) > 0,

ũGiiς is a random permutation that cannot exhibit non-classical behaviour. For example, if

P[ς(i1) = i1] > 0, ũGi1i1ς is a random permutation, and so for all ς ∈ G

P[(ς(i1) 6= i1) � (ς(i2) = i2) � (ς(i1) = i1)] = 0,

which implies that for any j3 6= i1, uGj3i1u
G
i2i2

uGi1i1 = 0. Therefore to find:

uGi1j3u
G
i2j2u

G
i1j1 6= 0, and uGj3i1u

G
j2i2u

G
j1i1 6= 0,

yields the non-transitivity of ∼3.

This phenomenon occurs in both the Kac-Paljutkin quantum group G0 and also the dual Q̂
of the quaternions. In the case of G0, the uncertainty phenomenon implies that the quantum

permutation given by ς2 := ũG0
41 ςe5 satisfies:

P[(ς(1) = 3) � (ς(3) = 1) � (ς(1) = 4)] =
1

4
⇒ uG0

31 u
G0
13 u

G0
41 6= 0⇒ (3, 1, 4) ∼3 (1, 3, 1).
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Similarly ς1 := ũG0
14 ςe5 shows that uG0

14 u
G0
31 u

G0
14 6= 0, and so (1, 3, 1) ∼3 (4, 1, 4). For transitivity,

it would have to be the case that (3, 1, 4) ∼3 (4, 1, 4), that is uG0
34 u

G0
11 u

G0
44 6= 0, but as for all

ς ′ ∈ G0 such that P[ς ′(4) = 4] > 0, ς := ũG0
44 ς
′ is a random permutation:

P[(ς(4) = 3) � (ς(1) = 1) � (ς(4) = 4)] = 0⇒ uG0
34 u

G0
11 u

G0
44 = 0,

and so ∼3 is not transitive for G0 < S+
4 .

Let Q̂ < S+
8 :

uQ̂ =

(
u〈̂j〉 0

0 u〈̂k〉

)
.

Both uQ̂11 and uQ̂55 are orthogonal projection onto direct sums of two one dimensional spaces (re-
spectively the one dimensional factors associated with {e, (57)(68)} ⊂ G

Q̂
, and {e, (13)(24)} ⊂

G
Q̂

). Direct calculation shows that uQ̂78u
Q̂
12u

Q̂
58 6= 0 so (7, 1, 2) ∼3 (8, 2, 8), and uQ̂85u

Q̂
21u

Q̂
85 6= 0

so (8, 2, 8) ∼3 (5, 1, 5), but uQ̂75u
Q̂
11u

Q̂
55 = 0 as conditioning by uQ̂55 gives a random permutation.
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837–934, 2000.

[27] Landsman, N.P., Algebraic Quantum Mechanics. In: Greenberger D., Hentschel K., Weinert F. (eds)
Compendium of Quantum Physics. Springer, Berlin, Heidelberg, 2009.

[28] Landsman, N.P., Classical and quantum representation theory, Proc. Seminar 1989–1990 Mathem. Struct.
in Field Theory (Amsterdam), pp. 135–163, CWI Syllabi, vol. 39, Math. Centrum, Centrum Wisk. Inform.
Amsterdam, 1996.

[29] Landstand, M. B., and Van Daele, A., Compact and discrete subgroups of algebraic quantum groups, I,
arXiv:0702.458, 2007.
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